Explore the words cloud of the QMiCS project. It provides you a very rough idea of what is the project "QMiCS" about.
The following table provides information about the project.
Coordinator |
BAYERISCHE AKADEMIE DER WISSENSCHAFTEN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 2˙999˙595 € |
EC max contribution | 2˙999˙595 € (100%) |
Programme |
1. H2020-EU.1.2.3. (FET Flagships) |
Code Call | H2020-FETFLAG-2018-03 |
Funding Scheme | RIA |
Starting year | 2018 |
Duration (year-month-day) | from 2018-10-01 to 2021-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | BAYERISCHE AKADEMIE DER WISSENSCHAFTEN | DE (MUENCHEN) | coordinator | 530˙410.00 |
2 | OXFORD INSTRUMENTS NANOTECHNOLOGY TOOLS LIMITED | UK (ABINGDON) | participant | 643˙750.00 |
3 | AALTO KORKEAKOULUSAATIO SR | FI (ESPOO) | participant | 413˙905.00 |
4 | Teknologian tutkimuskeskus VTT Oy | FI (Espoo) | participant | 413˙905.00 |
5 | ECOLE NORMALE SUPERIEURE DE LYON | FR (LYON) | participant | 355˙125.00 |
6 | UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA | ES (LEIOA) | participant | 317˙500.00 |
7 | INSTITUTO DE TELECOMUNICACOES | PT (GLORIA E VERA CRUZ) | participant | 175˙000.00 |
8 | TTI NORTE, S.L. | ES (SANTANDER) | participant | 150˙000.00 |
'The mission of QMiCS is to combine European expertise and lead the efforts in developing novel components, experimental techniques, and theory models building on the quantum properties of continuous-variable propagating microwaves. QMiCS’ long-term visions are (i) distributed quantum computing & communication via microwave quantum local area networks (QLANs) and (ii) sensing applications based on the illumination of an object with quantum microwaves (quantum radar). With respect to key quantum computing platforms (superconducting circuits, NV centers, quantum dots), microwaves intrinsically allow for zero frequency conversion loss since they are the natural frequency scale. They can be distributed via superconducting cables with surprisingly little losses, eventually allowing for quantum communication and cryptography applications. Radar works at gigahertz frequencies because of the atmospheric transparency windows anyways. Scientifically, QMiCS targets a QLAN demonstration via quantum teleportation, a quantum advantage in microwave illumination, and a roadmap to real-life applications for the second/third phase of the QT Flagship. Beneath these three grand goals lies a strong component of disruptive enabling technology provided by two full and one external industry partner: the development of a microwave QLAN cable connecting the millikevin stages of two dilution refrigerators, improved cryogenic semiconductor amplifiers, and packaged pre-quantum ultrasensitive microwave detectors. The resulting 'enabling' commercial products are beneficial for quantum technologies at microwave frequencies in general. Finally, QMiCS fosters awareness in industry about the revolutionary business potential of quantum microwave technologies, especially via the advisory third parties “Airbus Defence and Space Ltd” and “Cisco Systems GmbH”. In this way, QMiCS helps placing Europe at the forefront of the second quantum revolution and kick-starting a competitive European quantum industry.'
year | authors and title | journal | last update |
---|---|---|---|
2019 |
Shang Yu, Francisco Albarránâ€Arriagada, Juan Carlos Retamal, Yiâ€Tao Wang, Wei Liu, Zhiâ€Jin Ke, Yu Meng, Zhiâ€Peng Li, Jianâ€Shun Tang, Enrique Solano, Lucas Lamata, Chuanâ€Feng Li, Guangâ€Can Guo Reconstruction of a Photonic Qubit State with Reinforcement Learning published pages: 1800074, ISSN: 2511-9044, DOI: 10.1002/qute.201800074 |
Advanced Quantum Technologies 2/7-8 | 2020-04-25 |
2019 |
I. Arrazola, E. Solano, J. Casanova Selective hybrid spin interactions with low radiation power published pages: 245405, ISSN: 2469-9950, DOI: 10.1103/PhysRevB.99.245405 |
Physical Review B 99/24 | 2020-04-25 |
2019 |
Yongcheng Ding, Lucas Lamata, Mikel Sanz, Xi Chen, Enrique Solano Experimental Implementation of a Quantum Autoencoder via Quantum Adders published pages: 1800065, ISSN: 2511-9044, DOI: 10.1002/qute.201800065 |
Advanced Quantum Technologies 2/7-8 | 2020-04-25 |
2019 |
V. A. Sevriuk, K. Y. Tan, E. Hyyppä, M. Silveri, M. Partanen, M. Jenei, S. Masuda, J. Goetz, V. Vesterinen, L. Grönberg, M. Möttönen Fast control of dissipation in a superconducting resonator published pages: 82601, ISSN: 0003-6951, DOI: 10.1063/1.5116659 |
Applied Physics Letters 115/8 | 2020-04-25 |
2019 |
Roope Kokkoniemi, Joonas Govenius, Visa Vesterinen, Russell E. Lake, András M. Gunyhó, Kuan Y. Tan, Slawomir Simbierowicz, Leif Grönberg, Janne Lehtinen, Mika Prunnila, Juha Hassel, Antti Lamminen, Olli-Pentti Saira, Mikko Möttönen Nanobolometer with ultralow noise equivalent power published pages: 124, ISSN: 2399-3650, DOI: 10.1038/s42005-019-0225-6 |
Communications Physics 2/1 | 2020-04-25 |
2018 |
Matheus Capela, Mikel Sanz, Enrique Solano, Lucas C. Céleri Kolmogorov-Sinai entropy and dissipation in driven classical Hamiltonian systems published pages: 52109, ISSN: 2470-0045, DOI: 10.1103/physreve.98.052109 |
Physical Review E 98/5 | 2020-04-25 |
2019 |
Francisco A. Cárdenasâ€López, Mikel Sanz, Juan Carlos Retamal, Enrique Solano Enhanced Quantum Synchronization via Quantum Machine Learning published pages: 1800076, ISSN: 2511-9044, DOI: 10.1002/qute.201800076 |
Advanced Quantum Technologies 2/7-8 | 2020-04-25 |
2020 |
Francisco Silva, Mikel Sanz, João Seixas, Enrique Solano, Yasser Omar Perceptrons from memristors published pages: 273-278, ISSN: 0893-6080, DOI: 10.1016/j.neunet.2019.10.013 |
Neural Networks 122 | 2020-04-25 |
2019 |
A. Parra-Rodriguez, I. L. Egusquiza, D. P. DiVincenzo, E. Solano Canonical circuit quantization with linear nonreciprocal devices published pages: 14514, ISSN: 2469-9950, DOI: 10.1103/physrevb.99.014514 |
Physical Review B 99/1 | 2020-04-25 |
2019 |
Ricardo Puebla, Giorgio Zicari, Iñigo Arrazola, Enrique Solano, Mauro Paternostro, Jorge Casanova Spin-Boson Model as A Simulator of Non-Markovian Multiphoton Jaynes-Cummings Models published pages: 695, ISSN: 2073-8994, DOI: 10.3390/sym11050695 |
Symmetry 11/5 | 2020-04-25 |
2019 |
S. Pogorzalek, K. G. Fedorov, M. Xu, A. Parra-Rodriguez, M. Sanz, M. Fischer, E. Xie, K. Inomata, Y. Nakamura, E. Solano, A. Marx, F. Deppe, R. Gross Secure quantum remote state preparation of squeezed microwave states published pages: 2604, ISSN: 2041-1723, DOI: 10.1038/s41467-019-10727-7 |
Nature Communications 10/1 | 2020-04-25 |
2019 |
Andrés AgustÃ, Enrique Solano, Carlos SabÃn Entanglement through qubit motion and the dynamical Casimir effect published pages: 52328, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.99.052328 |
Physical Review A 99/5 | 2020-04-25 |
2019 |
R. Puebla, J. Casanova, O. Houhou, E. Solano, M. Paternostro Quantum simulation of multiphoton and nonlinear dissipative spin-boson models published pages: 32303, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.99.032303 |
Physical Review A 99/3 | 2020-04-25 |
2020 |
Feng Hu, Lucas Lamata, Mikel Sanz, Xi Chen, Xingyuan Chen, Chao Wang, Enrique Solano Quantum computing cryptography: Finding cryptographic Boolean functions with quantum annealing by a 2000 qubit D-wave quantum computer published pages: 126214, ISSN: 0375-9601, DOI: 10.1016/j.physleta.2019.126214 |
Physics Letters A 384/10 | 2020-04-25 |
2020 |
Ana Martin, Lucas Lamata, Enrique Solano, Mikel Sanz Digital-analog quantum algorithm for the quantum Fourier transform published pages: 13012, ISSN: 2643-1564, DOI: 10.1103/PhysRevResearch.2.013012 |
Physical Review Research 2/1 | 2020-04-25 |
2019 |
G. Alvarado Barrios, J. C. Retamal, E. Solano, M. Sanz Analog simulator of integro-differential equations with classical memristors published pages: 12928, ISSN: 2045-2322, DOI: 10.1038/s41598-019-49204-y |
Scientific Reports 9/1 | 2020-04-25 |
2019 |
J. Casanova, E. Torrontegui, M. B. Plenio, J. J. GarcÃa-Ripoll, E. Solano Modulated Continuous Wave Control for Energy-Efficient Electron-Nuclear Spin Coupling published pages: 10407, ISSN: 0031-9007, DOI: 10.1103/PhysRevLett.122.010407 |
Physical Review Letters 122/1 | 2020-04-25 |
2020 |
Tasio Gonzalez-Raya, Joseph M. Lukens, Lucas C. Céleri, Mikel Sanz Quantum Memristors in Frequency-Entangled Optical Fields published pages: 864, ISSN: 1996-1944, DOI: 10.3390/ma13040864 |
Materials 13/4 | 2020-04-25 |
2020 |
Adrian Parra-Rodriguez, Pavel Lougovski, Lucas Lamata, Enrique Solano, Mikel Sanz Digital-analog quantum computation published pages: 22305, ISSN: 2469-9926, DOI: 10.1103/PhysRevA.101.022305 |
Physical Review A 101/2 | 2020-04-25 |
2020 |
Tasio Gonzalez-Raya, Enrique Solano, Mikel Sanz Quantized Three-Ion-Channel Neuron Model for Neural Action Potentials published pages: 224, ISSN: 2521-327X, DOI: 10.22331/q-2020-01-20-224 |
Quantum 4 | 2020-04-25 |
2019 |
Tasio Gonzalez-Raya, Xiao-Hang Cheng, Iñigo L. Egusquiza, Xi Chen, Mikel Sanz, Enrique Solano Quantized Single-Ion-Channel Hodgkin-Huxley Model for Quantum Neurons published pages: 14037, ISSN: 2331-7019, DOI: 10.1103/physrevapplied.12.014037 |
Physical Review Applied 12/1 | 2020-04-25 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QMICS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "QMICS" are provided by the European Opendata Portal: CORDIS opendata.