Opendata, web and dolomites

HelixMold SIGNED

Computational design of novel functions in helical proteins by deviating from ideal geometries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HelixMold project word cloud

Explore the words cloud of the HelixMold project. It provides you a very rough idea of what is the project "HelixMold" about.

robustly    constraints    structure    classic    reactions    parametric    sites    encodable    ensembles    function    solvents    crick    coil    envisioned    proteins    deviations    usually    extraordinary    remediation    revolutionize    biotechnological    larger    helical    nature    ideal    novo    made    desired    strategy    stable    catalytically    site    idealized    harsh    harness    resistance    bundles    genetically    follow    critical    units    specified    tolerance    expands    bundle    coiled    introduce    unsolved    experimental    active    designs    de    first    biomedical    regions    chemical    strategies    parametrization    functionalization    crystallographic    space    geometry    geometries    biophysical    thermostability    repeating    progress    protein    code    followed    accounting    sequence    organic    harnessing    model    functional    cascade    environments    thermodynamic    helix    mutagenesis    backbones    rationally    saturation    computational    parametrically    bind    relying    designed    tremendous    heptad    isolate    stability    binding    ligand    glyphosate    interdisciplinary    computationally   

Project "HelixMold" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITAET GRAZ 

Organization address
address: RECHBAUERSTRASSE 12
city: GRAZ
postcode: 8010
website: www.tugraz.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙499˙414 €
 EC max contribution 1˙499˙414 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2024-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITAET GRAZ AT (GRAZ) coordinator 1˙499˙414.00

Map

 Project objective

We propose to computationally design novel ligand binding and catalytically active proteins by harnessing the high thermodynamic stability of de novo helical proteins. Tremendous progress has been made in protein design. However, the ability to robustly introduce function into genetically encodable de novo proteins is an unsolved problem. We will follow a highly interdisciplinary computational-experimental approach to address this challenge and aim to: -Characterize to which extent we can harness the stability of parametrically designed helical bundles to introduce deviations from ideal geometry. Ensembles of idealized de novo helix bundle backbones will be generated using our established parametric design code and designed with constraints accounting for an envisioned functional site. This will be followed by detailed computational, biophysical, crystallographic and site-saturation mutagenesis analysis to isolate critical design features. -Develop a new computational design strategy, which expands on the Crick coiled-coil parametrization and allows to rationally build non-ideal helical protein backbones at specified regions in the desired structure. This will enable us to model backbones around binding/active sites. We will design sites to bind glyphosate, for which remediation is highly needed. By using non-ideal geometries and not relying on classic heptad repeating units, we will be able to access a much larger sequence to structure space than is usually available to nature, enabling us to build more specific and more stable binding/catalytically active proteins. -Investigate new strategies to design the first cascade reactions into de novo designs. This research will allow functionalization of de novo designed proteins with high thermostability, extraordinary resistance to harsh chemical environments and high tolerance for organic solvents and has the potential to revolutionize how proteins for biotechnological and biomedical applications are generated.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HELIXMOLD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HELIXMOLD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More