Opendata, web and dolomites

MHDiscs SIGNED

From non-ideal magnetohydrodynamics to the structure and evolution of protoplanetary discs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MHDiscs" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙784˙300 €
 EC max contribution 1˙784˙300 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙784˙300.00

Map

 Project objective

Circumstellar discs are the birthplaces of planets. They form around young protostars and dissipate in a few million years. Modern submillimeter and optical telescopes such as ALMA and VLT/SPHERE are now able to resolve thin structures in the bulk of these objects, such as rings, crescents, spirals and winds, probing the very origin of planetary systems similar to our own. Our current understanding of these discs relies on a very crude modelling of a hypothetic magneto-hydrodynamic (MHD) turbulence thought to play an essential role in the evolution and structure of these systems. However, there is now compelling theoretical and observational evidence that these discs are weakly turbulent, if not laminar, because of their low ionisation fraction and thus poor coupling to the magnetic field. This suggests that subtle MHD processes are driving the dynamics of these objects.

Moreover, my recent theoretical breakthroughs demonstrate that these gaseous discs are subject to self-organisation and magneto-thermal winds. These processes play a key role for the disc as they can control its radial structure and evolution. I propose that computing global non-ideal MHD models from massively parallel numerical simulations will shed a new light on these processes, connecting the long-term evolution of these discs to the formation of large scale structures seen by ALMA and SPHERE. We expect MHDiscs to provide reliable global evolution models by coupling gas dynamics to dust and irradiation. These models will be used to predict discriminant observables of the processes I propose, setting the stage for a deeper understanding of the formation of planetary systems.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MHDISCS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MHDISCS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More