Opendata, web and dolomites

QUCUBE SIGNED

3D integration technology for silicon spin qubits

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QUCUBE project word cloud

Explore the words cloud of the QUCUBE project. It provides you a very rough idea of what is the project "QUCUBE" about.

103    consisting    least    elementary    particles    leverages    wiring    fault    semiconductors    computing    industrial    architecture    inaccessible    realize    spin    onto    hamiltonians    conceived    electrostatically    millions    interact    uncontrolled    physical    multiplexing    macroscopic    confined    processor    freedom    designed    qubits    environment    small    readout    purposely    microprocessors    dimensional    degrees    gate    digital    living    encoded    topological    remained    phenomena    electrical    foundational    free    computers    charge    theory    code    metal    fidelity    computational    opening    mechanics    lines    surface    entangled    originally    separated    silicon    qubit    ing    unpredictable    describe    host    layout    essentially    optical    served    containing    planes    evolution    dots    technological    individually    superposition    world    schemes    decoherence    hundreds    computer    array    sensing    microscopic    scalable    powers    predict    accommodate    atoms    quantum    changed    qucube    compensated    dauntingly    tolerant    modern    bits    simulations    unexploited    unprecedented    operated    transistors    logical    entanglement   

Project "QUCUBE" data sheet

The following table provides information about the project.

Coordinator
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Organization address
address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015
website: www.cea.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 13˙990˙460 €
 EC max contribution 13˙990˙460 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) coordinator 10˙980˙316.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 3˙010˙143.00

Map

 Project objective

Originally conceived to describe the microscopic world of atoms and elementary particles, the theory of quantum mechanics has eventually served to predict macroscopic phenomena, e.g. the electrical and optical properties of semiconductors, resulting a wide range of technological applications that have changed our way of living. Foundational properties like quantum superposition and entanglement, however, have remained essentially unexploited. Their use may allow achieving computational powers inaccessible to classical digital computers, opening unprecedented opportunities. In a quantum computer, the elementary bits of information are encoded onto two-level quantum systems called qubits. Since qubits interact with the uncontrolled degrees of freedom of their environment, the evolution of their quantum states can become quickly unpredictable, leading to a reduced qubit fidelity. In topological quantum computing schemes, e.g. the surface code, the reduced fidelity is compensated by using decoherence-free logical qubits consisting of a large number (~103) of entangled physical qubits. As a result, a useful quantum processor should host at least millions of qubits. Although dauntingly large, this number is still small as compared to the number of transistors in a modern silicon microprocessors. QuCube leverages industrial-level silicon technology to realize a quantum processor containing hundreds of spin qubits confined to a two-dimensional array of electrostatically defined silicon quantum dots. To face the challenge of addressing the qubits individually, we use a three-dimensional architecture purposely designed to accommodate, on separated planes, the charge sensing devices necessary for qubit readout, and the metal gate lines for the electrical control and measurement. The gate lines are operated according to a multiplexing principle, enabling a scalable wiring layout. We shall implement fault-tolerant logical qubits and quantum simulations of complex Hamiltonians

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUCUBE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUCUBE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

AncientAdhesives (2019)

Ancient Adhesives - A window on prehistoric technological complexity

Read More  

SERENiTi (2018)

Software Enhanced Research iN Transient kinetics

Read More