Opendata, web and dolomites

QUCUBE SIGNED

3D integration technology for silicon spin qubits

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QUCUBE project word cloud

Explore the words cloud of the QUCUBE project. It provides you a very rough idea of what is the project "QUCUBE" about.

changed    host    microscopic    accommodate    served    spin    code    realize    purposely    dimensional    phenomena    qucube    scalable    essentially    hamiltonians    entanglement    confined    theory    ing    charge    superposition    architecture    qubit    inaccessible    103    consisting    leverages    optical    schemes    dauntingly    onto    fault    interact    computers    quantum    encoded    powers    gate    computational    simulations    computer    electrical    wiring    fidelity    unpredictable    describe    metal    least    qubits    remained    microprocessors    physical    silicon    multiplexing    individually    world    readout    dots    degrees    electrostatically    originally    tolerant    mechanics    topological    computing    predict    processor    surface    freedom    planes    compensated    macroscopic    entangled    living    lines    millions    containing    unexploited    digital    hundreds    evolution    bits    uncontrolled    semiconductors    designed    environment    small    array    free    foundational    transistors    elementary    sensing    industrial    technological    modern    decoherence    operated    layout    separated    particles    conceived    atoms    logical    unprecedented    opening   

Project "QUCUBE" data sheet

The following table provides information about the project.

Coordinator
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Organization address
address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015
website: www.cea.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 13˙990˙460 €
 EC max contribution 13˙990˙460 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES FR (PARIS 15) coordinator 10˙980˙316.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 3˙010˙143.00

Map

 Project objective

Originally conceived to describe the microscopic world of atoms and elementary particles, the theory of quantum mechanics has eventually served to predict macroscopic phenomena, e.g. the electrical and optical properties of semiconductors, resulting a wide range of technological applications that have changed our way of living. Foundational properties like quantum superposition and entanglement, however, have remained essentially unexploited. Their use may allow achieving computational powers inaccessible to classical digital computers, opening unprecedented opportunities. In a quantum computer, the elementary bits of information are encoded onto two-level quantum systems called qubits. Since qubits interact with the uncontrolled degrees of freedom of their environment, the evolution of their quantum states can become quickly unpredictable, leading to a reduced qubit fidelity. In topological quantum computing schemes, e.g. the surface code, the reduced fidelity is compensated by using decoherence-free logical qubits consisting of a large number (~103) of entangled physical qubits. As a result, a useful quantum processor should host at least millions of qubits. Although dauntingly large, this number is still small as compared to the number of transistors in a modern silicon microprocessors. QuCube leverages industrial-level silicon technology to realize a quantum processor containing hundreds of spin qubits confined to a two-dimensional array of electrostatically defined silicon quantum dots. To face the challenge of addressing the qubits individually, we use a three-dimensional architecture purposely designed to accommodate, on separated planes, the charge sensing devices necessary for qubit readout, and the metal gate lines for the electrical control and measurement. The gate lines are operated according to a multiplexing principle, enabling a scalable wiring layout. We shall implement fault-tolerant logical qubits and quantum simulations of complex Hamiltonians

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUCUBE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUCUBE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

LO-KMOF (2019)

Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More  

TRUST (2018)

Truth and Semantics

Read More