Explore the words cloud of the CaLA project. It provides you a very rough idea of what is the project "CaLA" about.
The following table provides information about the project.
Coordinator |
ALBERT-LUDWIGS-UNIVERSITAET FREIBURG
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙999˙750 € |
EC max contribution | 1˙999˙750 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-05-01 to 2024-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ALBERT-LUDWIGS-UNIVERSITAET FREIBURG | DE (FREIBURG) | coordinator | 1˙999˙750.00 |
According to the World Health Organization more than 285 million people worldwide are visually impaired. In a world where graphics and online content (images, webpages) become increasingly important the inability to perceive information visually is the primary inhibitor for inclusion. In contrast to display technology for sighted people, tactile displays which translate text and graphics to touchable pixels (taxels) have seen little progress in recent decades. So-called Braille lines which display only a single line of text are still the norm. The reason why graphical tactile displays do not exist is the lack of a suitable actuator technology which allows generating massively parallelized individually addressable cost-effective taxel arrays.
This ERC Consolidator project aims at a revolution in microactuator array technology with a fundamentally new concept termed the Capillary Lock Actuator (CaLA). CaLA is a novel bistable massively parallelizable microfluidic microactuator which overcomes many of the limitations currently associated with microactuators. It can be operated with low-voltage control signals and requires virtually no power for actuation. CaLA harnesses three concepts inherent to microfluidics: positive capillary pressure, segmented flow and controllable locally confined changes in wetting. The project will use CaLA actuator arrays for setting up the very first portable tactile graphic display with 30.000 individually addressable taxels thereby significantly outperforming the state-of-the-art. It will be based on manufacturing techniques for highly complex microstructures in glass invented by my group.
CaLA will be a significant breakthrough in actuator technology and enabling for many applications in microsystem technology. Most importantly, it will be a significant step towards making the information technology inclusive for the visually impaired by providing the first robust cost-effective solution to large-scale tactile displays.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CALA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CALA" are provided by the European Opendata Portal: CORDIS opendata.
Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life
Read MoreA need for speed: mechanisms to coordinate protein synthesis and folding in metazoans
Read MoreUnderstanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell
Read More