Opendata, web and dolomites

InvADeRS SIGNED

Investigating the Activity of transposon Derived Regulatory Sequences in the placenta

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "InvADeRS" data sheet

The following table provides information about the project.

Coordinator
QUEEN MARY UNIVERSITY OF LONDON 

Organization address
address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS
website: http://www.qmul.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Aberrant epigenetic regulation of placental function is implicated in several complications of pregnancy, such as preeclampsia, recurrent pregnancy loss and fetal growth restriction. Notably, the placenta has a unique epigenetic landscape, permissive for the activity of transposable element (TE) derived DNA sequences. TEs are often co-opted by the host genome as cis-regulatory elements, driving tissue- and species-specific gene expression programs. Indeed, TEs contribute many placental-specific enhancers in mouse trophoblast. However, the presence and role of a similar TE-derived regulatory network has not been explored in human trophoblast. As TEs are highly species-specific, such a network in humans would be expected to regulate species-specific placental characteristics, such as the deep interstitial invasion unique to great apes. TE-derived regulatory elements may therefore be important for placental homeostasis and be involved in diseases characterised by aberrant placental invasion. I propose to map TE-derived cis-regulatory sequences in human trophoblast ex vivo using their histone modification signatures. I will assess the regulatory potential of candidate TEs through transcriptomic analyses and motif analysis to reveal transcription factor binding sites, highlighting promising candidates of importance in the human placenta. I will then directly test the function of top TE candidates using CRISPR-Cas9 genome editing of the TEs in trophoblast in vitro, and measuring changes in expression of target genes. Finally, I will elucidate epigenetic and coding differences between complicated and normal control placentas at the functional regulatory TE loci I find, to identify correlations with disease. This project will provide a comprehensive analysis of an as-yet unexplored aspect of human placental epigenetic regulation, and potentially identify novel causes of common unexplained complications of human pregnancy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INVADERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INVADERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More