Opendata, web and dolomites

forecast

The next generation of forest inventory

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 forecast project word cloud

Explore the words cloud of the forecast project. It provides you a very rough idea of what is the project "forecast" about.

technologies    operations    imagery    return    forestry    woods    reducing    time    ground    forefront    double    algorithms    optimal    combining    lidar    mapping    maintaining    calibration    cover    companies    remote    basis    harnessed    bottleneck    paramount    plots    generation    deep    conservation    rely    timber    area    biomass    paper    alone    wood    techniques    satellite    airborne    service    optical    plans    pros    completing    accurate    recreation    heavily    innovation    intensive    services    provides    geospatial    concerned    plays    data    optimize    individual    learning    productivity    inventory    minimum    forecast    sensors    sensing    crews    operate    quality    sustainability    limited    costly    efficiency    local    species    radar    sustainable    stand    volume    resolution    huge    fora    inherent    tree    assignments    forests    proprietary    attributes    policie    managers    labour    safety    mills    forest    plantations    estimating    organisation    estimation    disadvantages    inventories    solution    combine    bunch    cons    models    ai    schemes    sampling    mainly    pioneered   

Project "forecast" data sheet

The following table provides information about the project.

Coordinator
FORA FOREST TECHNOLOGIES SLL 

Organization address
address: C/ORESTE CAMARCA, 4 4B
city: SORIA
postcode: 42004
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website https://forecast.fora.es
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2019-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORA FOREST TECHNOLOGIES SLL ES (SORIA) coordinator 50˙000.00

Map

 Project objective

Accurate mapping of tree species and estimation of wood volume and biomass are important assignments of any forest inventory. However, forestry operations currently rely heavily on field data as a basis for estimating its attributes. This labour-intensive approach provides limited information and has become a costly bottleneck in completing operations. Today, remote sensing data plays a key role to characterize forests. Generation of accurate models combining a huge bunch of data requires the use of advance AI techniques that provides real time information about woods and its resources. fora has pioneered high-resolution and timely forest inventory services which combine state-of-the-art remote sensing technologies and deep learning to produce operational forest inventories that help improving the efficiency of forest management activities. Whether LiDAR, RADAR, and/or optical imagery, airborne or satellite, these sensors able to cover a large area for intensive sampling without the disadvantages inherent to labour-intensive ground sampling schemes done by field crews. However, each remote sensing solution has its own pros and cons, mainly to operate as stand-alone service. FORECAST is at the forefront of how geospatial and remote-sensing data can be harnessed to optimize safety, efficiency and productivity of forest operations. Key to FORECAST innovation is the fora proprietary calibration systems based on a double application of AI algorithms. FORECAST is the solution for forest managers and wood and paper companies, reducing the field plots to a minimum, while maintaining a high quality of information about the state of the forest at the (local) scale of individual plantations. Whether an organisation is concerned with timber, access to mills, recreation or conservation, achieving long term sustainability with an optimal return is of paramount importance for the design and implementation of effective sustainable forest management plans and forest-related policie

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FORECAST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FORECAST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

MindTrack (2019)

Analysis of eye vergence responses for the early detection and monitoring of cognitive and mental disorders

Read More  

COPI (2020)

Carbon Offset Plug-in

Read More  

Magnesys (2019)

Efficient filtering of metallic impurities in food processing

Read More