Explore the words cloud of the GHSO project. It provides you a very rough idea of what is the project "GHSO" about.
The following table provides information about the project.
Coordinator |
TECHNISCHE UNIVERSITAET DRESDEN
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 246˙669 € |
EC max contribution | 246˙669 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2019 |
Duration (year-month-day) | from 2019-06-01 to 2022-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | TECHNISCHE UNIVERSITAET DRESDEN | DE (DRESDEN) | coordinator | 246˙669.00 |
2 | CHILDREN'S HOSPITAL CORPORATION | US (BOSTON) | partner | 0.00 |
The adrenal cortex is essential for life; it is the primary site of steroid synthesis, producing glucocorticoids, which affect carbohydrate metabolism and mediate the mammalian stress response and mineralocorticoids, which control blood volume and salt homeostasis. Adrenal insufficiency (AI), which can be life threatening, is cause by a number of adrenal disorders, and lifelong management of these patients with exogenous steroids can be challenging. No drug suitably mimics the diurnal pattern of cortisol noted in healthy individuals, and objective variables to measure hormonal replacement therapy quality are lacking. The ability to generate steroid-producing cells from pluripotent stem cells through cell reprogramming, a process where a specialized cell type is induced to transform into a different cell, offers a new paradigm for functional studies, modelling human disease and drug testing and eventually can be used as a cell source for cellular therapies for patients suffering from adrenal conditions. This proposal aims to develop methodologies to generate adrenal-like organoids from human embryonic stem cells (hESCs), which have not been generated so far, without requiring overexpression of exogenous transcription factors and test them in in vivo models of adrenal insufficiency. Because small molecules provide several distinct advantages in controlling protein functions (e.g., temporally controllable, reversible, tunable and tractable) I will utilize them for a faster, more efficient, and directed cellular reprogramming. CRISPR-Cas9 genome engineered steroid-producing organoids harbouring common mutations found in congenital adrenal hyperplasia (CAH), the most common type of AI, will be generated and used as a disease modelling platform to study CAH. This proposal aims to accelerate the translation of this promising bench research to patients affected by adrenal insufficiency over the next 10 years.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GHSO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "GHSO" are provided by the European Opendata Portal: CORDIS opendata.