Opendata, web and dolomites

STRELECOID SIGNED

Stretchable mesh-electrodes interfacing human iPSC brain organoids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STRELECOID project word cloud

Explore the words cloud of the STRELECOID project. It provides you a very rough idea of what is the project "STRELECOID" about.

variety    nervous    arrangements    shed    thereby    bear    skin    stem    input    ensembles    human    overwhelmingly    disease    disorders    stages    invaluable    brain    regions    precisely    advantages    whereby    mental    shape    animal    genetic    single    ipsc    parallel    signature    donors    lack    biomaterials    central    form    refined    recruit    parkinson    epilepsy    reprogram    grows    integrating    unprecedented    assembloids    neurospheres    male    expand    genome    3d    mesh    overcome    tissue    efforts    pluripotent    humans    electrodes    faithful    performed    engineering    combination    symbiotically    integrate    clinical    donor    alzheimer    proximity    maturation    thalamic    physiological    culture    plan    cells    animals    cultures    massively    developmental    patient    cell    poorly    recent    sensory    seamlessly    limitation    operate    successful    assemble    environment    self    neurosphere    functional    transcriptomics    model    opens    code    vitro    neural    correct    plasticity    preparations    cortical    models    cellular    light    psychiatric    elicit    borne    inaccessible    possibility    organoids    mean    sexes    anatomically    electric    translate    neurons   

Project "STRELECOID" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 251˙002 €
 EC max contribution 251˙002 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 251˙002.00
2    BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY US (STANFORD) partner 0.00

Map

 Project objective

Recent advances in cellular engineering allow to recruit skin cells from donors and reprogram them into neural stem cells. These induced pluripotent stem cells (iPSC) bear the genetic code of the human patient. Efforts to culture these cells in-vitro have been successful in creating a wide variety of 3D arrangements called neurospheres. Because the human central nervous system is by and large inaccessible at all developmental stages, these functional tissue preparations are invaluable. Furthermore, clinical studies performed in animal models are known to translate poorly to humans and therefore these systems provide unprecedented advantages: human neurons in a controlled environment that have the genetic signature of psychiatric or mental disorders borne by the donor patient, such as Alzheimer’s or Parkinson’s disease. Finally, compared to animal studies where overwhelmingly only male animals are studied, stem cell research can operate on both sexes. The combination of new biomaterials, genome engineering and massively parallel single-cell transcriptomics opens opportunities to precisely study human brain disease A new exciting development is the possibility to form so-called assembloids, whereby organoids of different brain regions, as for example cortical and thalamic neural ensembles, are brought in proximity and self-assemble into anatomically correct brain regions. These approaches are necessary to study disorders like epilepsy. However these cultures lack physiological sensory input which are key in the development of mental plasticity. Here we plan to overcome this limitation by integrating new mesh-based electrodes that integrate seamlessly into brain tissue and expand symbiotically with the neurosphere as it grows, and thereby have a spatially refined mean to measure but also elicit neural activity. This will shed light on how electric maturation of these neurospheres comes about and help shape them to an anatomically more faithful brain model.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRELECOID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRELECOID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More