Opendata, web and dolomites

STRELECOID SIGNED

Stretchable mesh-electrodes interfacing human iPSC brain organoids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STRELECOID project word cloud

Explore the words cloud of the STRELECOID project. It provides you a very rough idea of what is the project "STRELECOID" about.

invaluable    neurospheres    patient    cells    shape    plasticity    successful    overwhelmingly    culture    male    efforts    grows    faithful    seamlessly    transcriptomics    neural    functional    engineering    ensembles    lack    disease    correct    refined    combination    cortical    plan    operate    thalamic    expand    skin    bear    stem    form    ipsc    mean    vitro    developmental    maturation    genome    light    donors    overcome    cellular    electric    mental    whereby    anatomically    stages    sexes    thereby    performed    possibility    arrangements    variety    parallel    opens    shed    model    organoids    models    inaccessible    poorly    recruit    pluripotent    borne    animal    3d    humans    physiological    cultures    precisely    elicit    epilepsy    donor    nervous    preparations    disorders    recent    tissue    electrodes    single    sensory    central    clinical    integrating    reprogram    proximity    limitation    assembloids    genetic    cell    assemble    code    input    human    brain    psychiatric    massively    neurons    biomaterials    animals    symbiotically    integrate    translate    signature    regions    neurosphere    alzheimer    self    environment    parkinson    mesh    advantages    unprecedented   

Project "STRELECOID" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 251˙002 €
 EC max contribution 251˙002 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 251˙002.00
2    BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY US (STANFORD) partner 0.00

Map

 Project objective

Recent advances in cellular engineering allow to recruit skin cells from donors and reprogram them into neural stem cells. These induced pluripotent stem cells (iPSC) bear the genetic code of the human patient. Efforts to culture these cells in-vitro have been successful in creating a wide variety of 3D arrangements called neurospheres. Because the human central nervous system is by and large inaccessible at all developmental stages, these functional tissue preparations are invaluable. Furthermore, clinical studies performed in animal models are known to translate poorly to humans and therefore these systems provide unprecedented advantages: human neurons in a controlled environment that have the genetic signature of psychiatric or mental disorders borne by the donor patient, such as Alzheimer’s or Parkinson’s disease. Finally, compared to animal studies where overwhelmingly only male animals are studied, stem cell research can operate on both sexes. The combination of new biomaterials, genome engineering and massively parallel single-cell transcriptomics opens opportunities to precisely study human brain disease A new exciting development is the possibility to form so-called assembloids, whereby organoids of different brain regions, as for example cortical and thalamic neural ensembles, are brought in proximity and self-assemble into anatomically correct brain regions. These approaches are necessary to study disorders like epilepsy. However these cultures lack physiological sensory input which are key in the development of mental plasticity. Here we plan to overcome this limitation by integrating new mesh-based electrodes that integrate seamlessly into brain tissue and expand symbiotically with the neurosphere as it grows, and thereby have a spatially refined mean to measure but also elicit neural activity. This will shed light on how electric maturation of these neurospheres comes about and help shape them to an anatomically more faithful brain model.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRELECOID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRELECOID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ORIGIN (2019)

Origin: reconstructing African prehistory using ancient DNA

Read More  

MCRD (2020)

Development Of Microfluidic Based Low Cost Industrial Cryo-Ready Devices For Preservation Of Living Cells

Read More  

lanloss (2020)

Landscapes of Loss: Mapping the Affective Experience of Deforestation Among Diverse Social Groups in the South American Chaco

Read More