Opendata, web and dolomites

SynapSeek SIGNED

Learning the shape of synaptic plasticity rules for neuronal architectures and function through machine learning.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SynapSeek project word cloud

Explore the words cloud of the SynapSeek project. It provides you a very rough idea of what is the project "SynapSeek" about.

limited    difficulty    flexible    learning    algorithms    synapses    incorporate    reliably    published    first    rules    chess    stereotypically    deduce    largely    questions    constraints    mode    structure    neural    canonical    similarly    complexity    shape    dance    interference    ranging    dubbed    silico    mechanisms    how    newly    time    weaken    cortical    building    hundred    connectivity    brain    go    governed    integrate    meant    experimentally    function    structures    environment    infer    basic    synaptic    progress    stimulation    computational    utilizing    expression    slow    mathematical    triggered    power    circuits    machine    accordingly    changing    circuit    operation    framework    answer    synapseek    measuring    simulations    search    monitor    play    data    protocols    extraordinary    network    handful    deep    memory    representative    appropriate    connection    game    plasticity    strengthen    observing    instrument    types    unknown    sheer    additional   

Project "SynapSeek" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙798˙605 €
 EC max contribution 1˙798˙605 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 1˙798˙605.00

Map

 Project objective

How do we learn to dance, play an instrument, or a game as complex as chess or go? How do we make a memory? The common answer to these questions is “through synaptic plasticity”, through changing the synaptic connectivity of neural circuits so that representative brain activity can be reliably triggered. Such connectivity changes are governed by rules, i.e., synaptic mechanisms which monitor the activity of their environment and stereotypically strengthen or weaken synapses accordingly. The shape and mode of operation of these rules is still largely unknown: For the more than hundred different connection types in cortical circuits, only a handful of rules has been described at all. Similarly, testing observed rules in simulations of cortical function has only seen limited success. Our slow progress is due to the extraordinary difficulty of measuring and observing synapses without interference.

Here, we propose a new approach. By utilizing the growing power of machine learning methods we can deduce synaptic plasticity rules directly. Newly developed search algorithms and sheer computational power allow us to integrate published data and infer synaptic rules in silico. We aim to (1) develop a new mathematical expression of synaptic plasticity rules, experimentally appropriate and flexible enough to be implemented in a Machine Learning framework, dubbed SYNAPSEEK. Next (2), we will apply SYNAPSEEK to deduce the rules for building various neural structures with increasing complexity. Finally (3), we will incorporate additional constraints to SYNAPSEEK to develop synaptic rules that shape network function as much as its structure. Our work will establish, for the first time, canonical sets of synaptic plasticity rules, based on the circuit structure they must produce, and the function they are meant to support. SYNAPSEEK will have immediate and wide ranging applications, from a basic understanding of cortical development to better protocols for Deep Brain Stimulation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNAPSEEK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNAPSEEK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More