Explore the words cloud of the SynapSeek project. It provides you a very rough idea of what is the project "SynapSeek" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 1˙798˙605 € |
EC max contribution | 1˙798˙605 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-COG |
Funding Scheme | ERC-COG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-06-01 to 2024-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD | UK (OXFORD) | coordinator | 1˙798˙605.00 |
How do we learn to dance, play an instrument, or a game as complex as chess or go? How do we make a memory? The common answer to these questions is “through synaptic plasticity”, through changing the synaptic connectivity of neural circuits so that representative brain activity can be reliably triggered. Such connectivity changes are governed by rules, i.e., synaptic mechanisms which monitor the activity of their environment and stereotypically strengthen or weaken synapses accordingly. The shape and mode of operation of these rules is still largely unknown: For the more than hundred different connection types in cortical circuits, only a handful of rules has been described at all. Similarly, testing observed rules in simulations of cortical function has only seen limited success. Our slow progress is due to the extraordinary difficulty of measuring and observing synapses without interference.
Here, we propose a new approach. By utilizing the growing power of machine learning methods we can deduce synaptic plasticity rules directly. Newly developed search algorithms and sheer computational power allow us to integrate published data and infer synaptic rules in silico. We aim to (1) develop a new mathematical expression of synaptic plasticity rules, experimentally appropriate and flexible enough to be implemented in a Machine Learning framework, dubbed SYNAPSEEK. Next (2), we will apply SYNAPSEEK to deduce the rules for building various neural structures with increasing complexity. Finally (3), we will incorporate additional constraints to SYNAPSEEK to develop synaptic rules that shape network function as much as its structure. Our work will establish, for the first time, canonical sets of synaptic plasticity rules, based on the circuit structure they must produce, and the function they are meant to support. SYNAPSEEK will have immediate and wide ranging applications, from a basic understanding of cortical development to better protocols for Deep Brain Stimulation.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNAPSEEK" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SYNAPSEEK" are provided by the European Opendata Portal: CORDIS opendata.
HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration
Read More