Opendata, web and dolomites

BATNMR SIGNED

Development and Application of New NMR Methods for Studying Interphases and Interfaces in Batteries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BATNMR project word cloud

Explore the words cloud of the BATNMR project. It provides you a very rough idea of what is the project "BATNMR" about.

electrochemically    spin    metal    heterogeneous    degradation    batteries    evolve    parallel    stability    nature    applicable    structures    technological    cheaper    electrode    characterization    air    generation    biradicals    redox    society    renewable    designed    dendrites    organic    nuclear    reactive    final    dnp    surface    phases    quinones    inherent    lasting    compatible    chemistry    run    experimental    multiple    gasoline    chemistries    variety    extract    demand    probe    sei    passivating    composite    electrolyte    reducing    containing    interdisciplinary    dynamic    nmr    materials    mechanisms    active    electrochemical    layers    electron    limiting    li    energy    significantly    strategies    structure    interphase    techniques    balance    modifying    determined    molecules    polarization    vehicles    coupled    interface    oxidizing    fuel    liquid    dynamics    metrologies    lithium    physical    electrochemistry    electronic    analytical    situ    longer    shift    appropriate    harsh    species    methodology    interphases    rechargeable    emphasis    prevent    density    intermittent    interfaces    structural    catalysts    solar    conventional    ceramic    designing    resonance    powered    components    solid    explore    nanoparticles    exploited    dendrite    reaction    representing    cells    grow    electric    fuels    technologies    battery    flow    cycling   

Project "BATNMR" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 3˙498˙219 €
 EC max contribution 3˙498˙219 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 3˙498˙219.00

Map

 Project objective

The development of longer lasting, higher energy density and cheaper rechargeable batteries represents one of the major technological challenges of our society, batteries representing the limiting components in the shift from gasoline-powered to electric vehicles. They are also required to enable the use of more (typically intermittent) renewable energy, to balance demand with generation. This proposal seeks to develop and apply new NMR metrologies to determine the structure and dynamics of the multiple electrode-electrolyte interfaces and interphases that are present in these batteries, and how they evolve during battery cycling. New dynamic nuclear polarization (DNP) techniques will be exploited to extract structural information about the interface between the battery electrode and the passivating layers that grow on the electrode materials (the solid electrolyte interphase, SEI) and that are inherent to the stability of the batteries. The role of the SEI (and ceramic interfaces) in controlling lithium metal dendrite growth will be determined in liquid based and all solid state batteries. New DNP approaches will be developed that are compatible with the heterogeneous and reactive species that are present in conventional, all-solid state, Li-air and redox flow batteries. Method development will run in parallel with the use of DNP approaches to determine the structures of the various battery interfaces and interphases, testing the stability of conventional biradicals in these harsh oxidizing and reducing conditions, modifying the experimental approaches where appropriate. The final result will be a significantly improved understanding of the structures of these phases and how they evolve on cycling, coupled with strategies for designing improved SEI structures. The nature of the interface between a lithium metal dendrite and ceramic composite will be determined, providing much needed insight into how these (unwanted) dendrites grow in all solid state batteries. DNP approaches coupled with electron spin resonance will be use, where possible in situ, to determine the reaction mechanisms of organic molecules such as quinones in organic-based redox flow batteries in order to help prevent degradation of the electrochemically active species.

This proposal involves NMR method development specifically designed to explore a variety of battery chemistries. Thus, this proposal is interdisciplinary, containing both a strong emphasis on materials characterization, electrochemistry and electronic structures of materials, interfaces and nanoparticles, and on analytical and physical chemistry. Some of the methodology will be applicable to other materials and systems including (for example) other electrochemical technologies such as fuel cells and solar fuels and the study of catalysts (to probe surface structure).

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BATNMR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BATNMR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

E-DURA (2018)

Commercialization of novel soft neural interfaces

Read More  

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More