Opendata, web and dolomites

AutoCapSyn SIGNED

Capsule based machines for the automated synthesis of organic molecules for drug discovery and medicinal chemistry

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AutoCapSyn project word cloud

Explore the words cloud of the AutoCapSyn project. It provides you a very rough idea of what is the project "AutoCapSyn" about.

consuming    safer    robustness    technically    sales    commercial    reaction    candidate    declining    unfriendly    time    continues    goals    ultimately    critical    specialists    purification    machine    components    lower    deeper    capsule    size    successful    flow    offers    form    feasibility    safety    pricing    timesaving    touch    benefits    minus    environmentally    drug    exploration    toxic    amounts    completion    structure    benchtop    molecules    launch    environment    chain    delays    prepare    protocols    dynamics    ing    minimised    simplify    safe    leader    channels    optimal    productivity    machines    efficient    discovery    innovative    tiny    appropriate    synthesises    compatibility    chemical    rely    biological    flexibility    unpredictable    supply    synple    button    introduces    marketing    route    feasible    data    unsafe    countries    expensive    first    commercially    capsules    frequency    market    amount    automated    gaining    aid    exposure    scaffolds    customer    trained    synthesis    agents    enclosed   

Project "AutoCapSyn" data sheet

The following table provides information about the project.

Coordinator
SYNPLE CHEM AG 

Organization address
address: VLADIMIR-PRELOG-WEG 3, HCI F314
city: ZURICH
postcode: 8093
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SYNPLE CHEM AG CH (ZURICH) coordinator 50˙000.00

Map

 Project objective

Drug discovery continues to rely on the synthesis of tiny amounts of candidate molecules using unpredictable protocols that require highly trained specialists. As such, it remains expensive, time-consuming, unsafe, and environmentally unfriendly. Declining productivity, high costs, and safety issues, have driven a large amount of chemical synthesis to lower cost countries, which introduces delays and uncertainty in the drug discovery process, where the flexibility to rapidly prepare new molecules in response to biological data is critical to success.

In order to address these problems, Synple has developed an innovative, benchtop, capsule-based machine that synthesises new molecules at the touch of a button. This fully automated technology offers significant timesaving and productivity benefits. With all necessary components for the safe execution of the reaction and purification of the resulting products enclosed within the capsule, the user’s exposure to toxic agents will be minimised. Use of the automated machines with the innovative capsules will aid chemical research organisations as they can greatly simplify the way in which key chemical scaffolds are produced while providing a safer and more efficient work environment.

The first goal of this feasibility study is to determine if the technology is technically feasible in its current form (robustness and compatibility with customer’s current work flow). The second goal – exploration of the commercially feasibility − will be achieved by gaining a deeper insight in the market size and dynamics, as well as determining frequency of use. Upon successful completion of these goals, we aim to then establish the steps required for commercial launch. Key parameters include: defining the supply chain and pricing structure and identifying the most appropriate sales, marketing and distribution channels. Ultimately, Synple aims to use this feasibility study to identify the optimal route to becoming the market leader.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AUTOCAPSYN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AUTOCAPSYN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

Manuback (2019)

MANUBACK, the smart garment for operator protection in the field of Manual Handling of Goods

Read More  

SCAT (2019)

Smart Composites for Additive Technology

Read More  

Nocturne (2019)

The eye as a window to the brain, extending lifelong brain health

Read More