Explore the words cloud of the MODSTABVAR project. It provides you a very rough idea of what is the project "MODSTABVAR" about.
The following table provides information about the project.
Coordinator |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 1˙201˙370 € |
EC max contribution | 1˙201˙370 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2025-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE | CH (LAUSANNE) | coordinator | 1˙201˙370.00 |
Stable varieties, originally introduced by Kollár and Shepherd-Barron, are higher dimensional generalizations of the algebro-geometric notion of stable curves from many perspectives. Their partially conjectural moduli space classifies smooth projective varieties of general type up to birational equivalence, and it also provides a projective compactification for this classifying space. The latter is essential for applying algebraic geometry to the moduli space itself. Furthermore, over the complex numbers, stable varieties can be also defined surprisingly as the projective varieties admitting a negative curvature (singular) Kähler-Einstein metric by the work of Berman and Guenancia, or as the canonically polarized K-stable varieties by Odaka.
The fundamental objective of the project is to construct the coarse moduli space of stable surfaces with fixed volume over the integers (possibly excluding finitely many primes, not depending on the volume). In particular this involves showing the Minimal Model Program for 3-folds that are projective over a 1 dimensional mixed characteristic base. The main motivations are applications to the general algebraic geometry and arithmetic of higher dimensional varieties.
The above fundamental goal is also an incarnation of Grothendieck's philosophy that algebraic geometry statements should be proved in a relative setting. This was implemented right at the beginning for stable curves, but it has not been possible to attain for stable varieties of higher dimensions, due to the lack of technology. Hence, the project aims to establish new technology in mixed and positive characteristic geometry based on recent developments, such as modern Minimal Model Program, the vanishings given by balanced big Cohen-Macaulay algebras (the existence of which was shown by André using Scholze's perfectoid theory), trace method for lifting sections, p-torsion cohomology killing via alterations (by Bhatt), torsor method on singular varieties, etc.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MODSTABVAR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MODSTABVAR" are provided by the European Opendata Portal: CORDIS opendata.