Opendata, web and dolomites

THEIA SIGNED

Design and engineering of porous nitride-based materials as a platform for CO2 photoreduction

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "THEIA" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙498˙934 €
 EC max contribution 1˙498˙934 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 1˙498˙934.00

Map

 Project objective

CONTEXT: Reshaping our energy portfolio considering the sustainability of global energy resources is central to the European Energy Roadmap 2050. Hence, researchers need to identify efficient routes towards solar fuels production. Unlike H2 evolution, CO2 photoreduction has been poorly studied. Given the scope for CO2 utilisation in a carbon-constrained future, there is an exciting opportunity to devote targeted research towards CO2 photoreduction. Photocatalysis is one route towards CO2 reduction. Yet, the design of a cost-effective, sustainable, efficient and robust photocatalyst remains a highly challenging task. PROPOSAL: I propose to merge catalysis, materials science and engineering to develop a radically new class of photocatalysts, i.e. porous boron nitride (BN)-based materials for CO2 reduction. My approach is opposite to current research trends which explore non-crystalline and non-porous materials, and aims to compete with the 40-year old benchmark in the field, TiO2. Porous BN combines key attributes for CO2 photoreduction: (i) chemical, structural and optoelectronic tunability, (ii) high porosity, (iii) semi-crystalline to amorphous nature. These features provide unique pathways towards effective sorption of reactants/products, facile band gap engineering, and enhanced surface charge transfer. Their semi-crystalline to amorphous nature may facilitate scale-up. IMPACT: I will address three major challenges: 1. Creating a porous BN-based material platform with adsorptive and photocatalytic functionalities 2. Adding a new dimension to photocatalyst design via porosity control 3. Creating approaches to molecular- and micro-structure engineering in porous BN Realization of these advances would lead towards a ‘dream photocatalyst’ with integrated adsorptive, optoelectronic and catalytic functionalities. The impact will benefit fields for which interfacial phenomena are key: molecular separation, catalysis and drug delivery.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THEIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THEIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

iNANOVAC4CANCER (2019)

BIOHYBRID AND BIODEGRADABLE NANOVACCINES FOR CANCER IMMUNOTHERAPY

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More