Opendata, web and dolomites

UCL SIGNED

Unmanned Chemical Lab (UCL): autonomous control system for the remote management of soluble and emulsifiable metalworking fluids

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UCL project word cloud

Explore the words cloud of the UCL project. It provides you a very rough idea of what is the project "UCL" about.

ucl    fluid    automatic    industries    operator    profit    health    workers    relies    roi    unusable    reys    either    alter    powered    machinery    time    100    optimum    full    unmanned    correction    amount    accurate    platform    transportation    metalworking    novelty    45    susceptible    database    cloud    operation    metal    risks    environmental    emulsions    deterioration    drastically    pillars    lab    situ    keep       interventions    service    last    degradation    events    cumulative    ai    exposure    mew    pose    measured    reduce    chemical    4m    intelligence    disposal    disposed    foresee    risk    negative    water    remotely    controls    safety    artificial    rely    alerting    automatically    expert    respiratory    skin    bacterial    send    commercialisation    several    fabrication    life    using    monitoring    post    company    disintegration    software    predicts    reducing    mwf    additives    extensive    12    waste    reactions    once    week    generate    operators    poured    intervene    smooth    impacts    evaporation    associate    fluids    continuous    pours    manages    restore    emulsion   

Project "UCL" data sheet

The following table provides information about the project.

Coordinator
REYS SPA 

Organization address
address: VIA CESARE BATTISTI 78
city: ARCORE
postcode: 20862
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-12-01   to  2020-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    REYS SPA IT (ARCORE) coordinator 50˙000.00

Map

 Project objective

Several industries such as transportation, machinery and metal fabrication rely on metalworking fluids (MWF) for smooth operation. Water-based MWF, especially emulsions are susceptible to deterioration due to factors such as bacterial growth or evaporation of water which alter the fluid characteristics. In order to keep MWF properties at their optimum, additives must be used. Currently, however, testing of parameters is done either once a week using hand-held devices or using automatic systems which send information to operators alerting them to intervene. If additives are not poured in time, the MWF become unusable and need to be disposed. MWF disposal is associated with high costs of waste management and negative environmental impacts. In addition, both MWF and additives pose health risks such as skin reactions and respiratory conditions. REYS S.p.A, an expert chemical production and fluid management company has developed the Unmanned Chemical Lab (UCL), a cloud-based platform that automatically predicts fluid degradation events, remotely manages and controls process fluids reducing drastically the health exposure risk to workers. Based on an extensive database on MWF parameters and interventions taken by operators, our system has an artificial intelligence (AI) software capable to determine the amount of additives required to restore parameters to their optimum and pours the measured additives automatically. UCL novelty relies on four major pillars: (1) AI powered software enables continuous, automatic and highly accurate monitoring of the emulsion providing correction of MEW parameters in real-time; (2) usage of less than 2% fluids and additives; (3) reduce MWF disintegration by 100% enabling the fluid to last its full-service life of a year and (4) 100% reduction of health and safety operator risks associate with in situ MWF measurements. We foresee to generate a cumulative profit of €2.4M, a ROI of 4.45 and 12 personnel, 5 years post commercialisation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UCL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UCL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

Dyme (2019)

Dyme gives its users complete control over their financial situation. The Dyme application provides insight into users’ spending and subscriptions, and lets users cancel, negotiate, or switch any cont

Read More  

ECOBIOMASS (2019)

Achieving unique wines through an efficient production process

Read More  

Magnesys (2019)

Efficient filtering of metallic impurities in food processing

Read More