Explore the words cloud of the RECYPION project. It provides you a very rough idea of what is the project "RECYPION" about.
The following table provides information about the project.
Coordinator |
AARHUS UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 1˙998˙864 € |
EC max contribution | 1˙998˙864 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-COG |
Funding Scheme | ERC-COG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2025-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | AARHUS UNIVERSITET | DK (AARHUS C) | coordinator | 1˙998˙864.00 |
The carboxyl polyether ionophores (CPIs) is a class of >150 complex natural products. Belonging to the most complicated of Nature's secondary metabolites, they are darlings within total chemical synthesis, however, the biological role of these agents is obscure. Due to their canonical function of equilibrating ion-gradients across biological membranes, CPIs are thought to be unspecific and largely uninteresting. Here, I will advocate and demonstrate the opposite position: that not only are these compounds extremely interesting with respect to their complex effects on cells, they also harbor a unique anti-microbial activity that should be a strong priority as we stagger towards a post-antibiotic era. With RECYPION my team and I will draw these compounds back into the spotlight. We will ask the following fundamental questions: 1. Can we develop a synthesis-paradigm that will significantly expand the CPI-chemical space to fully explore their anti-microbial activities? 2. What are the molecular determinants that control the antibiotic-potential of the CPIs, and how do these relate to the mechanism of ion-transport? 3. Can we uncover the cellular activities of CPIs – perhaps even “dark” activities that do not involve ion-transport? We will pioneer a CPI-synthesis-approach based on the ability to recycle complex components from highly abundant CPI-family members. To do so, we will develop novel chemical transformations to deconstruct these molecules which may find broader use in a world that is increasingly focused on how to preserve resources. We will provide the first real experimental characterization of the molecular mechanism by which CPIs mediate ion transport by using ultrafast surface-sensitive spectroscopy on membrane-resident CPIs along with unprecedented structural insight using ultra-high field NMR. Finally, we will use an image-based screening technology called morphological profiling to reveal completely new cellular activities of the CPIs.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RECYPION" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "RECYPION" are provided by the European Opendata Portal: CORDIS opendata.
Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read MoreDiscovering a novel allergen immunotherapy in house dust mite allergy tolerance research
Read MoreCancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read More