Opendata, web and dolomites

DeepNOE SIGNED

DeepNOE: Leveraging deep learning for protein structure solving at ultra-high resolution on the basis of NMR measurements with exact nuclear Overhauser enhancement

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DeepNOE project word cloud

Explore the words cloud of the DeepNOE project. It provides you a very rough idea of what is the project "DeepNOE" about.

protocol    data    nearly    deep    constitutes    derive    hierarchical    automatically    accuracy    delivering    spectra    model    machine    afterwards    nmr    cyana    candidate    time    overhauser    parts    structure    avenues    resolution    dl    nuclear    scientist    computer    intelligence    professor    algorithm    emerged    cells    discovery    aring    enabled    populated    living    3d    science    dynamics    achievement    host    opportunity    months    enoes    distance    artificial    magnetic    creates    laboratory    raw    first    freezing    exact    contrast    reveal    solution    explore    optimization    revolutionized    crystallization    visual    tackled    atomic    resonance    possibility    drug    structures    calculating    formulate    conformational    fellow    protein    structural    summing    multiple    biophysical    learning    enhancements    days    transforms    solving    simultaneously    routine    2010    2d    unprecedented    noesy    biology    reduce    spectroscopy    automates    proteins    extracts    physiological    divided    techniques    outstanding   

Project "DeepNOE" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 191˙149.00

Map

 Project objective

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the leading techniques for protein structure analysis. In contrast to other methods, NMR spectroscopy allows the measurement of the dynamics and structure of a protein under nearly physiological conditions, without the need for crystallization or freezing of a sample. Recent studies on exact Nuclear Overhauser enhancements (eNOEs), carried out in the laboratory of the host professor, have enabled distance measurements in proteins by NMR with accuracy of 0.1 Å. This allows to determine structures in solution and in living cells with unprecedented resolution.

This biophysical achievement creates an outstanding opportunity for a computer scientist (the fellow candidate) to develop the first-of-its-kind model/algorithm that automatically transforms raw NMR measurements into high-resolution protein structures that reveal multiple simultaneously populated conformational states in atomic detail. This problem will be tackled with the use of deep learning (DL), a novel field in machine learning that has emerged after 2010 and has revolutionized data science and artificial intelligence.

The project is divided into 3 parts. First, it is planned to investigate recent advances in DL to derive a model that extracts visual information from 2D and 3D NMR spectra. Afterwards, the proposed model will be integrated into CYANA to formulate a hierarchical DL/optimization routine, which automates all steps of protein structure solving. Finally, it is planned to explore the possibility of calculating protein structures directly from NOESY spectra, which constitutes a new protocol for protein structure solving by NMR spectroscopy.

Summing up, the proposed DL approach has the potential to reduce the time required to solve proteins with NMR from months/years to days, while delivering very high resolution, multi-state structures. We expect this project to open new avenues in structural biology and drug discovery.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEPNOE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEPNOE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More