Opendata, web and dolomites

GelPrint SIGNED

Printable polypeptide hydrogels with antimicrobial properties

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "GelPrint" data sheet

The following table provides information about the project.

Coordinator
ROYAL COLLEGE OF SURGEONS IN IRELAND 

Organization address
address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2
website: www.rcsi.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 184˙590 €
 EC max contribution 184˙590 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ROYAL COLLEGE OF SURGEONS IN IRELAND IE (DUBLIN) coordinator 184˙590.00

Map

 Project objective

Biomaterials with antimicrobial properties which can be used for wound healing and tissue engineering applications offer high application potential due to the global increase of antimicrobial resistance. While polypeptides own this potential, their integration into a materials platform has not been realised to date. The overall objective of this project is to develop 3D printable antimicrobial or bacteriostatic polypeptide hydrogel materials, which can be employed in tissue regeneration applications to prevent bacterial growth. In particular, the goals include synthesis of sets of cross-linked polypeptide hydrogels based on lysine (Lys) and investigation of their hydrogel properties and 3D printability. Moreover, evaluation, validation and quantification of the antimicrobial properties of the hydrogels as well as the proof of concept demonstration for their feasibility in tissue regeneration will be addressed. The synthesis of these particular copolypeptides hydrogels is highly novel and their exploitation as a printable tissue regenerating platform is timely, of high fundamental as well as clinical impact and considered a new approach. The proposed project is broadly interdisciplinary, as disciplines of polymer chemistry, biomaterials science and engineering, microbiology and in vitro assessment techniques will be combined. The high-level science combined with complementary training will significantly advance the career opportunities of the applicant. Moreover, the excellent match of the applicant`s expertise with the project and the host organisation will ensure a strong transfer of knowledge between all participants. The potential of the proposed project is further highlighted by the possible commercial exploitation of the scientific findings and developments. Finally, it will enable new collaboration opportunities between research groups from different scientific fields.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GELPRINT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GELPRINT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Drought (2020)

Drought coping strategies in southern Africa 1966-2016

Read More  

ASSEMBLY (2019)

Advancing Synthethic Supramolecular chemical biology

Read More  

PreSpeech (2018)

Predicting speech: what and when does the brain predict during language comprehension?

Read More