Opendata, web and dolomites

BeamSense SIGNED

Making more with less: intelligent wavefront design to enable high resolution images of unstable samples.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BeamSense project word cloud

Explore the words cloud of the BeamSense project. It provides you a very rough idea of what is the project "BeamSense" about.

forming    illuminating    intensities    wave    beam    previously    heating    formed    microscope    pharmaceuticals    contrast    collected    largely    overcoming    materials    angular    quality    received    electron    optical    apertures    electrons    visualise    position    reducing    noise    detectors    structure    reshape    imaging    microscopes    battery    momentum    easily    compounds    localised    probe    form    photovoltaics    roadblock    acquisition    damage    image    impediment    weak    requiring    front    movement    demonstration    generate    tails    disciplines    significantly    signal    aperture    scanned    scanning    first    bound    stems    instead    images    diffraction    ago    broad    mechanics    specimen    planar    respective    intensity    transmission    rearrangement    severe    profound    inability    scientific    creates    sensitive    scattered    limited    raster    good    atomic    progress    pixel    portions    circular    longer    recorded    dose    shaping    resolution    ultimately    stem    intelligent    unchanged    reduce    limits   

Project "BeamSense" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00

Map

 Project objective

The resolution of images formed using scanning transmission electron microscopes (STEMs) is no longer limited by optical limits of the microscope, but instead by sample damage during acquisition. The image is formed by a highly focused beam of electrons being scanned across the specimen, with diffraction intensities recorded at each probe position. However, the beam can also cause localised heating and rearrangement of the atomic structure – and it is this movement that ultimately limits the image quality. Electron-beam-induced specimen damage is particularly severe for weakly-bound compounds, such as battery materials, photovoltaics or pharmaceuticals. The inability to visualise the atomic structure of these materials easily is a severe impediment to research progress in their respective fields. Overcoming the beam-damage roadblock would have a profound impact across many scientific disciplines. This can be achieved by significantly reducing the number of electrons required to form an image. The mechanics of image formation in STEMs is largely unchanged since their first demonstration 80 years ago: the probe is formed by illuminating a circular aperture with a planar electron wave, brought to a focus on the sample and raster scanned. Portions of the scattered intensity are collected to determine the intensity of the pixel associated with each probe position. Electron detectors have developed significantly in recent years - while the probe-forming apertures have received less attention. A circular aperture creates a probe with broad tails, and an image with only weak contrast, thus requiring many electrons to achieve good signal-to-noise. I have previously developed methods to reshape the electron beam to generate angular momentum. In this work, I will apply related methods to increase the image contrast by intelligent shaping of the wave front. This will reduce the required electron dose, and thus enable atomic resolution STEM imaging of beam sensitive materials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BEAMSENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BEAMSENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More