Coordinatore | TECHNISCHE UNIVERSITAET MUENCHEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 2˙200˙000 € |
EC contributo | 2˙200˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-ADG_20110209 |
Funding Scheme | ERC-AG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-03-01 - 2017-02-28 |
# | ||||
---|---|---|---|---|
1 |
TECHNISCHE UNIVERSITAET MUENCHEN
Organization address
address: Arcisstrasse 21 contact info |
DE (MUENCHEN) | hostInstitution | 2˙200˙000.00 |
2 |
TECHNISCHE UNIVERSITAET MUENCHEN
Organization address
address: Arcisstrasse 21 contact info |
DE (MUENCHEN) | hostInstitution | 2˙200˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Present day limitations of information technology based on magnetic materials may be traced to the notion, that all magnetic materials known until recently exhibit conventional, i.e., topologically trivial, forms of magnetic order. Only two years ago the first example of an entirely new form of magnetic order has been discovered, which is composed of topologically stable spin solitons (so called skyrmions) caused by chiral spin interactions. These skyrmions display several exceptional properties, e.g., great stability against perturbations and spin torque effects at ultra-low current densities. Because the underlying chiral interactions exist, in principle, in a very wide range of different settings a comprehensive search for similar spin solitons in other bulk compounds, thin films and especially at interfaces promises major break-throughs for information technology. For instance, the spin transfer torques at ultra-low current densities open an unexpected, new route to high-speed data processing. Further, the topological stability of the solitons may be exploited in non-volatile high-density data storage devices. Finally, the topological Hall effect caused by spin solitons may be used to build a new class of field sensors.
The objectives of this proposal are a systematic search for new forms of magnetic order composed of topologically protected (particle-like) spin solitons in bulk materials driven by chiral interactions. This will establish a new field of magnetic phenomena. We further propose the development of concepts how to exploit specifically the topological aspects of these spin solitons in information technology. The proposed research program comprises state-of-the art materials preparation, in-depth studies of the materials properties using bulk and microscopic probes and advanced theoretical modelling. While the proposed project represents a high-risk effort, it promises a fundamentally new approach to information technology'
Families of Inequalities- Social and economic consequences of the changing work-family equilibria in European Societies
Read MoreDetection and interpretation of de novo mutations and structural genomic variations in mental retardation
Read MoreSolar cells at the nanoscale: imaging active photoelectrodes in the transmission electron microscope
Read More