LOCALSTRUCTURE

"Local Structure of Sets, Measures and Currents"

 Coordinatore THE UNIVERSITY OF WARWICK 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙068˙147 €
 EC contributo 2˙068˙147 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-05-01   -   2017-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK

 Organization address address: Kirby Corner Road - University House -
city: COVENTRY
postcode: CV4 8UW

contact info
Titolo: Dr.
Nome: Peter
Cognome: Hedges
Email: send email
Telefono: +44 0 24 7652 3859
Fax: +44 0 24 7652 4991

UK (COVENTRY) hostInstitution 2˙068˙147.00
2    THE UNIVERSITY OF WARWICK

 Organization address address: Kirby Corner Road - University House -
city: COVENTRY
postcode: CV4 8UW

contact info
Titolo: Prof.
Nome: David
Cognome: Preiss
Email: send email
Telefono: +44 0 2476574828
Fax: +44 0 2476524182

UK (COVENTRY) hostInstitution 2˙068˙147.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

modern    banach    lipschitz    representation    setting    fundamental    differentiability    questions    geometric    spaces    functions    infinite    dimensional    structure    metric   

 Obiettivo del progetto (Objective)

'The objective of this research proposal is to develop new methods to answer a number of fundamental questions generated by the recent development of modern analysis. The questions we are interested in are specifically related to the study of local structure of sets and functions in the classical Euclidean setting, in infinite dimensional Banach spaces and in the modern setting of analysis on metric spaces. The main areas of study will be:

(a) Structure of null sets and representation of (singular) measures, one of the key motivations being the differentiability of Lipschitz functions in finite dimensional spaces.

(b) Nonlinear geometric functional analysis, with particular attention to the differentiability of Lipschitz functions in infinite dimensional Hilbert spaces and Banach spaces with separable dual.

(c) Foundations of analysis on metric spaces, the key problems here being representation results for Lipschitz differentiability spaces and spaces satisfying the Poincar'e inequality.

(d) Uniqueness of tangent structure in various settings, where the ultimate goal is to contribute to the fundamental problem whether minimal surfaces (in their geometric measure theoretic model as area minimizing integral currents) have a unique behaviour close to any point.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

INVIVOSYNAPSE (2013)

Cellular determinants of neuronal plasticity on the level of single synapses in vivo

Read More  

IMMUNEXPLORE (2010)

New approaches to analyze and exploit the human B and T cell response against viruses

Read More  

QIOS (2012)

Quantum Interfaces and Open Systems

Read More