POLARITRONICS

Manipulation of trapped quantum polariton fluids

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 2˙000˙000 €
 EC contributo 2˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-02-01   -   2017-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Ms.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 4977
Fax: +41 21 693 5585

CH (LAUSANNE) hostInstitution 2˙000˙000.00
2    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Benoît
Cognome: Deveaud
Email: send email
Telefono: +41 79 8127552
Fax: +41 79 8127552

CH (LAUSANNE) hostInstitution 2˙000˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

solid    condensates    traps    demonstrated    made    fluids    quantum    quality    bec    polaritons    confined    manipulation    transition    physics    polariton   

 Obiettivo del progetto (Objective)

'Despite their incredibly short lifetime, around a few picoseconds only, it has now been amply demonstrated that polaritons may undergo Bose Einstein condensation (BEC) and such quantum fluids have demonstrated very interesting properties such as superfluidity. This project aims at introducing a new paradigm in solid-state physics trough the manipulation of polaritons quantum fluids and condensates in properly designed traps : such fluids will bring a wide variety of novel properties. With my team, I have recently made major advances towards this by preparing high quality polariton traps and evidencing some of the aspects of the rich physics of polaritons fluids in traps. The whole field of polariton fluids is still in its infancy and I am convinced that major discoveries will be made during the coming years both for propagating polariton fluids and for confined geometries. I intend to stay at the forefront the field of confined polaritons and to provide high quality structures to other labs. My studies will be oriented along three major lines, each requesting a significant effort. - The study of polariton BECs and quantum fluids in planar microcavities, both in II-VIs and III-Vs, - The manipulation of coherent polariton fluids in geometry controlled environments, - The realization of BEC and quantum fluid based polaritronic devices. Each of these three parts represents a major challenge with great potentialities. First, these topics are a really novel contribution in solid-state physics. Second, the possible manipulation of polariton condensates opens up a vast domain, which covers both fundamental and applied physics and which limits we are absolutely unable to assess yet. I feel that the transition from atom condensates to polariton condensates may bring similar improvements for possible devices than it has been the case for the transition between the electronic tube and the transistor. I aim to keep my research group at the head of these very promising changes.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

GENE TARGET T2D (2011)

General and targeted approaches to unravel the molecular causes of type 2 diabetes

Read More  

SINGLECELLDYNAMICS (2013)

Optofluidic toolkit for characterizing single-cell dynamics in systems immunology

Read More  

CEMOMAGNETO (2014)

The Cellular and Molecular Basis of Magnetoreception

Read More