Coordinatore | TECHNISCHE UNIVERSITAET MUENCHEN
Organization address
address: Arcisstrasse 21 contact info |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 189˙360 € |
EC contributo | 142˙020 € |
Programma | FP7-JTI
Specific Programme "Cooperation": Joint Technology Initiatives |
Code Call | SP1-JTI-CS-2010-05 |
Funding Scheme | JTI-CS |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-07-01 - 2012-12-31 |
# | ||||
---|---|---|---|---|
1 |
TECHNISCHE UNIVERSITAET MUENCHEN
Organization address
address: Arcisstrasse 21 contact info |
DE (MUENCHEN) | coordinator | 142˙020.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'In PALAST active and passive load alleviation techniques will be reviewed together. The passive measures require modification of the primary structure and thus influence the dynamic response of the wing. An active load alleviation scheme for an aircraft is based on its static and dynamic structural behavior. Therefore, a significant interaction of passive and active load alleviation technique is expected. Identification, analysis and optimization of these effects will be performed by a coupled flight-dynamic and aeroelastic simulation model with both load alleviation techniques implemented. A baseline structural model will be parameterized over multiple structural parameters, considering the composite layup of wing panels and stringers, which is normally employed for wingbox structural optimization. This enables a variable stiffness layout which may frequently be adapted in the analysis procedure. Finally, a structural optimization task will be performed, exploiting maximum efficiency of active and passive load alleviation. PALAST enables and develops technology for a multidisciplinary design approach, using combined active and passive load control. Taking into account all advantages of load alleviation, as well as possible detrimental interactions, a reasonable structural design with minimized weight can be achieved. Lightweight structural design takes a key role in reduction of fuel consumption and related CO2 emission, one of the “ACARE Vision 2020” goals.'
Understanding and minimizing anode degradation in hydrogen and natural gas fuelled SOFCs
Read More