CHAMP RNA HELICASE

"Function, Mechanism, and Regulation of Mammalian Mov10L1 RNA Helicase"

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 8293097
Fax: +972 4 8232958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 8293097
Fax: +972 4 8232958

IL (HAIFA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

champ    cyclin    cip    hypertrophy    helicases    kip    heart    cycle    regulates    regarding    cardiac    dependent    cell    myocytes    translation    mechanism    physiological    mrna    cardiomyocytes    progression    stages    rna    molecular    integrate    regulation    metabolism    helicase      

 Obiettivo del progetto (Objective)

'Adult cardiac myocytes retain the ability to respond to a variety of stimuli by hypertrophic growth. Hypertrophy is initially beneficial, permitting enhanced cardiac output; it can ultimately become deleterious and result in cardiomyopathy, heart failure, and sudden death. Mitogenic signaling drives cell cycle progression as consequences of their effects on cyclins, which interact with cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Recent work showed that CHAMP has antihypertrophic activity, which requires the conserved ATPase motif that is characteristic of RNA helicase superfamilies 1 and 2, and is associated with up-regulation of the cell cycle inhibitor p21CIP1 and p27KIP1. CHAMP is localized in the cytoplasm of cardiomyocytes and is likely regulates its target RNA at the level of translation and degradation. The regulation p21CIP1 and p27KIP1 translation levels controls the proliferation of cardiomyocytes by inhibiting cell cycle progression. However, very little is known regarding the molecular mechanism of how RNA helicases regulate translation. To date detailed enzymology regarding the mechanical transduction of RNA helicases is scarcely known, especially from superfamily 1 to which CHAMP is identified with. This proposal is aim to decipher the molecular mechanism of a putative RNA helicase CHAMP and how it regulates mRNA metabolism of genes essential for the heart development during prenatal stages and regulates CDKI’s mRNA in postnatal stages. The research program will integrate state of the art molecular biochemistry and biophysics approach with medicinal translational research. An interdisciplinary structured based team will be assembled to integrate knowledge, and capacity from molecular to physiological aspects of cardio myocytes hypertrophy. This will result from integration of key enzymatic regulators as CHAMP to the physiological regulation of cardiomyocytes hypertrophy response in human at the molecular level of mRNA metabolism.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MAGMA (2008)

Mass transfer of metals and sulfur between mafic silicate melts and volatiles: an interdisciplinary approach

Read More  

NANODYGP (2010)

Nanoscale Operation and Dynamics of small GTPases - Identification of novel Isoform specifying Determinants

Read More  

ICEVOLUME (2013)

Ice volume changes of Icelandic ice caps in the last 75 years – a view from the air

Read More