MULTISCALEFSI

Multiscale Fluid-Solid Interaction in Heterogeneous Materials and Interfaces

 Coordinatore Bilkent Üniversitesi 

 Organization address address: ESKISEHIR YOLU 8 KM
city: ANKARA
postcode: TR-06800

contact info
Titolo: Mr.
Nome: Ahmet
Cognome: Durukal
Email: send email
Telefono: 903123000000

 Nazionalità Coordinatore Turkey [TR]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-10-01   -   2016-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Nome Ente NON disponibile

 Organization address address: ESKISEHIR YOLU 8 KM
city: ANKARA
postcode: TR-06800

contact info
Titolo: Mr.
Nome: Ahmet
Cognome: Durukal
Email: send email
Telefono: 903123000000

TR (ANKARA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

materials    fluid    computational    soft    basis    porous    finite    interfaces    lubrication    phenomenological    recently    tissue    homogenization    modeling    nature    fcc    multiscale    continuum    solid    fsi    techniques    media    framework   

 Obiettivo del progetto (Objective)

'Fluid-solid interaction (FSI) governs nature. From soft tissue modeling to lubrication technology, FSI problems in biomechanics and engineering are a major challenge in computational science towards understanding and emulating nature. This challenge is further intensified by the multiscale structure of materials and interfaces as well as by the finite configurational change (FCC) that a microstructure experiences under large deformations.

The goal of this proposal is to conduct fundamental research on novel computational strategies for the modeling and analysis of multiscale FSI for materials and interfaces with FCC on all scales and homogenization as the core scale transition technique. The examples that will motivate and guide this research are potential future biological and industrial applications of the novel computational framework: (1) soft porous materials such as tissue scaffolds and articular cartilage that function together with pore-level fluids in order to facilitate organ regeneration and provide mechanical support, and (2) rough or textured compliant interfaces as in bearings and polymeric seals that deliver enhanced lubrication performance by increasing load-carrying capacity and decreasing energy consumption.

The theoretical and computational basis of the envisioned research spans techniques from continuum and statistical mechanics. If successful, the major benefits of this research will be (i) a robust continuum FSI scheme based on the numerically efficient lattice Boltzmann method for the fluid coupled to the finite element method for the solid, which will constitute the basis of (ii) novel homogenization techniques that deliver a non-phenomenological description of advanced anisotropic porous media and lubrication theories, and which will ultimately yield to (iii) a multiscale framework through the application of recently developed isogeometric analysis techniques to macroscale porous media and lubrication interfaces.

The overwhelming majority of the referenced research on which the present proposal rests has been conducted within the last 5-10 years, with major breakthroughs having been achieved only recently. Based on these recent advances, the vision in this proposal is to steer the macroscopic simulations of fluid-saturated materials and interfaces not with conventional phenomenological constitutive laws but solely through explicit microscopic FSI computations.'

Altri progetti dello stesso programma (FP7-PEOPLE)

RZZ (2009)

Structural and Functional Characterization of the RZZ Complex

Read More  

SMART MUSE (2010)

Strategic Management tools for Art Museums

Read More  

HK97 MATURATION (2011)

Structural studies of HK97 bacteriophage assembly and maturation

Read More