HOTMOL

Hot Molecules in Exoplanets and Inner Disks

 Coordinatore KIEPENHEUER-INSTITUT FUER SONNENPHYSIK 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙436˙000 €
 EC contributo 2˙436˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KIEPENHEUER-INSTITUT FUER SONNENPHYSIK

 Organization address address: SCHONECKSTRASSE 6
city: Freiburg im Breisgau
postcode: 79104

contact info
Titolo: Dr.
Nome: Jozef
Cognome: Bruls
Email: send email
Telefono: +49 761 3198 234
Fax: +49 761 3198 211

DE (Freiburg im Breisgau) hostInstitution 2˙436˙000.00
2    KIEPENHEUER-INSTITUT FUER SONNENPHYSIK

 Organization address address: SCHONECKSTRASSE 6
city: Freiburg im Breisgau
postcode: 79104

contact info
Titolo: Prof.
Nome: Svetlana
Cognome: Berdyugina
Email: send email
Telefono: +49 761 3198101
Fax: +49 761 3198111

DE (Freiburg im Breisgau) hostInstitution 2˙436˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

spectropolarimetry    technique    vapour    stellar    exoplanets    potentially    water    tools    planet    direct    exploration    inner    orbits    liquid    hot    disks    planetary    molecules    detection    earth    surface    planets    telescopes    habitable   

 Obiettivo del progetto (Objective)

'Understanding the nature and distribution of habitable environments in the Universe is one of the fundamental goals of modern astrophysics. For the life we know, liquid water on the planetary surface is a prerequisite. However, a direct detection of liquid water on exoplanets, and especially on a potentially habitable Earth-size planet, is not yet possible. The existence of water almost certainly implies the presence of atmospheric water vapour which must evaporate under stellar irradiation from a cloud deck or from the surface, together with other related molecules. Therefore, devising sensitive methods to detect hot molecules on exoplanets is of high importance. This proposal develops several exploratory theoretical and observational aspects of precision spectropolarimetry for detecting water vapour and other volatiles on exoplanets and in the inner part of protoplanetary disks. These are new tools for making progress in our understanding which fraction of planets acquires water and how planet formation influences their habitability. As a “double differential” technique, spectropolarimetry has enormous advantages for dynamic range problems, like detection of weak line signals against a large stellar background and exploration at scales beyond the angular resolution of telescopes, which are crucial for both exoplanets and inner disks. Direct detection of polarized spectral lines enables recovering precise orbits of exoplanets (including non-transiting systems) and evaluating their masses as well as potentially their magnetic fields. First applied to hot Jupiters the developed tools will create a firm foundation for future exploration of Earth-like planets with larger telescopes. The same technique applied to planetesimals in the inner disks of young stars yields their orbits, temperature, and chemical composition. These will provide constraints on the formation of a planetary atmosphere in the vicinity of the star and its habitable zone.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FINIMPMACRO (2012)

Financial Imperfections and Macroeconomic Implications

Read More  

EMIL (2008)

Exceptional Materials via Ionic Liquids

Read More  

DSBRECA (2012)

Relevance of double strand break repair pathway choice in human disease and cancer

Read More