V-STIR

Visual-spatiotemporal integration for recognition

 Coordinatore THE UNIVERSITY OF BIRMINGHAM 

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Mr.
Nome: Robert
Cognome: Fekete
Email: send email
Telefono: 441214000000
Fax: 441214000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 181˙103 €
 EC contributo 181˙103 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-11-01   -   2012-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Mr.
Nome: Robert
Cognome: Fekete
Email: send email
Telefono: 441214000000
Fax: 441214000000

UK (BIRMINGHAM) coordinator 181˙103.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

recordings    scenes    entails    computational    binding    dynamic    cluttered    visual    mechanisms    cortical    time    paradigm    ability    mediate    detecting    fmri    integration    perception    slit    interactions    objects    spatiotemporal    neural    eeg    recognize    memory    spatial   

 Obiettivo del progetto (Objective)

'Detecting and identifying targets in cluttered scenes is critical for successful interactions in the complex and dynamic environments we inhabit. Despite the ease and speed with which we recognize objects, visual recognition entails the computationally challenging task of binding relevant features together for the perception of coherent meaningful objects. Most work on visual integration focuses on spatial binding processes. However, detecting dynamic objects in cluttered scenes entails storage of image fragments in memory and integration across time. Here we propose to investigate the mechanisms that mediate integration across space and time. We will exploit the contour slit-viewing paradigm: that is, an object moving behind a narrow slit is still perceived as a whole. In task 1, we will characterize quantitatively the ability for slit-viewing perception and generate a computational model describing the principles that guide spatiotemporal integration. In task 2, we will test for similarities and differences in the neural substrates underlying spatial and spatiotemporal integration using conventional GLM and advanced multivariate analyses. In task 3, we will test for cortical regions that mediate perceptual deformations under slit-viewing. Task 4 will use precise retinotopic mapping to investigate the memory store processes engaged in spatiotemporal integration. Finally, in task 5 we will employ simultaneous EEG-fMRI recordings to examine the dynamic information processing of spatiotemporal integration and the interactions within the cortical circuit involved. The proposed work programme will devise a new paradigm and take advantage of recent advances in multimodal recordings (EEG-fMRI) and advanced computational analysis methods to explore the neural mechanisms of spatiotemporal integration for the first time. This interdisciplinary work will offer new insights into the neural machinery that underlies our ability to recognize dynamic objects in cluttered scenes.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SOURCE (2010)

Tracing Amazon soil organic carbon input from land to the ocean

Read More  

SOUNDTRACK (2013)

The autonomous assessment of aircraft sound power and position

Read More  

SMARTPTDRUGS (2010)

Fluorescent nanocrystals for activation and delivery of platinum drugs

Read More