Coordinatore | POLITECNICO DI MILANO
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 2˙493˙000 € |
EC contributo | 2˙493˙000 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-ADG_20110209 |
Funding Scheme | ERC-AG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-04-01 - 2017-03-31 |
# | ||||
---|---|---|---|---|
1 |
ALMA MATER STUDIORUM-UNIVERSITA DI BOLOGNA
Organization address
address: Via Zamboni 33 contact info |
IT (BOLOGNA) | beneficiary | 941˙000.00 |
2 |
POLITECNICO DI MILANO
Organization address
address: PIAZZA LEONARDO DA VINCI 32 contact info |
IT (MILANO) | hostInstitution | 1˙552˙000.00 |
3 |
POLITECNICO DI MILANO
Organization address
address: PIAZZA LEONARDO DA VINCI 32 contact info |
IT (MILANO) | hostInstitution | 1˙552˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Two-dimensional (2D) nuclear magnetic resonance is a diagnostic technique that has revolutionized structural biology. A wealth of spectroscopic information can be obtained by extrapolating 2D techniques to the optical frequency domain, using ultrashort light pulses. 2D electronic spectroscopy (2DES) allows fundamentally new insights into the structure and dynamics of multi-chromophore systems, by measuring how the electronic states of chromophores interact with one another and transfer electronic excitations. Due to technical difficulties, 2DES has been limited so far to the visible range, while most biomolecules absorb in the ultraviolet (UV). This project aims at extending 2DES to the challenging and still uncharted UV-domain and applying it to the study of the photophysics of genomic systems and of the secondary structure of proteins. Nature has engineered DNA molecules to be photostable, so that harmful photochemical processes are minimized. 2DES will unravel the molecular mechanisms of the photoinduced electronic intra/inter-chromophore events in DNA, exposing the energy dissipation pathways which are responsible for its photoprotection. 2DES will be also established as a new diagnostic tool for structural studies of polypeptides and proteins, relying on the UV absorbing peptide bonds and aromatic residues, the latter acting as native local structural probes. 2DES will provide sensitive information on the misfolding/aggregation processes responsible for a wide class of diseases, with the speed of standard optical techniques but with a much greater information content. This will bridge the experimental gap between crude estimates of protein unfolding and full structure determination, enabling rapid assessment of which variants are worth of deeper structural studies. To realize the full power of 2DES, experiments will be combined with simulations and electronic calculations that are necessary to correlate the data with molecular states and structures.'