NMRSILION

Solid-state Nuclear Magnetic Resonance (NMR) Spectroscopy studies of silicon anodes for Lithium-ion batteries

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 209˙033 €
 EC contributo 209˙033 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-03-01   -   2014-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 209˙033.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

laboratory    materials    nmr    promising    ion    storage    ex    batteries    charge    situ    time    sources    energy    lithium   

 Obiettivo del progetto (Objective)

'The dwindling sources of fossil fuels and rapidly rising CO2 levels necessitate a much more efficient use of energy. Better energy storage technology is especially needed if renewable sources of energy are to be used widely. Lithium-ion batteries are the most promising answer so far, but more demanding applications such as electrical vehicles or home powering require substantial increase in storage capacity and charge rates. Characterisation of actual and promising novel materials is of critical importance towards this goal, as better understanding of their mechanism will have direct impact on the optimisation and development of such materials for energy storage.

I propose to work on one of the most promising material for negative electrodes in lithium-ion batteries, silicon. The goal is to determine the structural changes that occur inside the electrode and to study the reactions arising on the surface. The studies will be performed using a combination of sophisticated solid-state Nuclear Magnetic Resonance (NMR) methods and state-of-the-art periodic DFT calculations. New methods will be developed for ex-situ NMR initially, with the long-term objective of adapting them to the in-situ NMR design in the world-specialist laboratory (host laboratory). The in-situ setup makes it possible to study batteries in real time during charge and discharge by NMR, thereby capturing transient transformations that can be missed by ex-situ studies.

Via the proposed research programme, I will bring expertise in new NMR methodologies to the Cambridge laboratory and I will at the same time learn new skills in the area of materials chemistry and battery technology.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MIRACLE (2010)

"Microscopic Image Processing, Analysis, Classification and Modelling Environment"

Read More  

EULAMDIMA (2012)

Joint European and Latin American Research Network on Diabetic Microangiopathy

Read More  

EUWORLD (2013)

Explore Unknown WORLDs

Read More