SMARTS

Super-resolution Fluorescence Microscopy based on Artificial Mesoscopic Structures

 Coordinatore JULIUS-MAXIMILIANS UNIVERSITAET WUERZBURG 

 Organization address address: SANDERRING 2
city: WUERZBURG
postcode: 97070

contact info
Titolo: Mr.
Nome: Christian
Cognome: Gloggengießer
Email: send email
Telefono: +49 931 3182294
Fax: +49 931 3187180

 Nazionalità Coordinatore Germany [DE]
 Totale costo 174˙475 €
 EC contributo 174˙475 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-06-01   -   2014-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    JULIUS-MAXIMILIANS UNIVERSITAET WUERZBURG

 Organization address address: SANDERRING 2
city: WUERZBURG
postcode: 97070

contact info
Titolo: Mr.
Nome: Christian
Cognome: Gloggengießer
Email: send email
Telefono: +49 931 3182294
Fax: +49 931 3187180

DE (WUERZBURG) coordinator 174˙475.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

microscopy    time    provides    imaging    spatial    link    super    speed    mesoscopic    artificial    techniques    image    samples    resolution    localization    optical    fluorescence    light    acquisition    dynamics    tool    cell    real    structure    structures    fast    molecular    live   

 Obiettivo del progetto (Objective)

'Studies of the dynamical process of biological samples benefits from real-time imaging microscopy which can provide wide-field high resolution with sufficient material contrast. Hence, fluorescence-based microscopy has become one of the essential tools of modern biology. However, fluorescence techniques as other optical tool suffer from a fundamental resolution limit due to the wave nature of light. While resolution is denoted by the ability to discern different objects, much effort has been devoted to improve the spatial resolution of far-field fluorescence microscopy and it has spurred the emergence of many innovative techniques. Stimulated Emission Depletion (STED) microscopy has shown the best lateral resolution among the far-field techniques. However, based on point scanning, it is too slow to catch fast molecular dynamics in an image time series. Photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) are equally powerful techniques that strictly spoken do not improve the spatial resolution, but the localization precision to pinpoint single molecules. The major drawback is that image acquisition is time consuming and thus makes them even less compatible for fast real-time imaging. Henceforth, the lifesciences community is still missing a microscopy technique that provides both high speed and super-resolution. To hurdle these limitations, we propose a fluorescence method that is based on artificial mesoscopic structures that are fully biocompatible and allow for super-resolution imaging of molecular dynamics in live cell with video-rate acquisition speed. Using an artificial mesoscopic structure one can manipulate light and design new components not previously realized such as a “perfect lens”. It has the potential for a breakthrough in biotechnology and may close the gap between Electron Microscopy (EM) and Fluorescence Microscopy (FM) even further to link structure and function of a biomolecule respectively.'

Introduzione (Teaser)

Real-time imaging of live cell and tissue samples provides an important tool to link structures and signalling pathways to functions. A novel nano-structured microscopic slide enhances resolution and efficiency, and could provide a new window on cellular mechanisms.

Altri progetti dello stesso programma (FP7-PEOPLE)

BESIII-XYZ (2014)

Understanding the Nature of Exotic Hadrons - Charmonium Spectroscopy at BESIII

Read More  

IMPISM (2013)

Improving the Physics in Ice Sheet Models

Read More  

NANOEYE (2010)

Optical Fiber-based Nanobiosensors for Early Prostate Cancer Diagnosis

Read More