Coordinatore | THE UNIVERSITY OF BIRMINGHAM
Organization address
address: Edgbaston contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 209˙033 € |
EC contributo | 209˙033 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2011-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-01-21 - 2015-01-20 |
# | ||||
---|---|---|---|---|
1 |
THE UNIVERSITY OF BIRMINGHAM
Organization address
address: Edgbaston contact info |
UK (BIRMINGHAM) | coordinator | 209˙033.40 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Cycloaddition reactions are extremely potent methods to form complex heterocycles. However, [32]-cycloadditions across alkynes are generally ineffective for the formation of 1,3-azoles which are key constituents of natural products, pharmaceuticals and materials. This project aims to establish a convergent and readily applicable gold-catalysed formal [32]-cycloaddition strategy to prepare diverse highly-substituted 1,3-azoles and related heteroaromatic structures. Reaction discovery and optimization will be followed by a detailed study of the substrate scope which will include the preparation of bioactive materials to demonstrate the efficacy of the proposed methodology to the synthetic community. The second major strand of the project will exploit the ability of this methodology to provide expedient access to functional materials, in the form of chiral aminooxazoles as the basis of organocatalyst systems. Transfer of the fellow’s prior expertise and knowledge of system design and reaction application in organocatalysis will be central to the development, study and application of this potentially privileged scaffold at the core of a range of organocatalyst families. The modular and convergent method of the oxazole synthesis will facilitate both major and fine tuning of the catalysts function in single point, dual point and triple point activation, across nucleophilic catalysis, H-bond activation, and secondary amine catalysis for iminium and enamine based processes. As well as the research impact and added value to the project from knowledge transfer, outreach activities across several layers of the population will be performed. An accessible resource will be prepared for scientists; general public knowledge and appreciation of chemistry will be enhanced, and the enthusiasm for science in the next generation of students and potential scientists will be encouraged.'