COMET

foundations of COmputational similarity geoMETtry

 Coordinatore UNIVERSITA DELLA SVIZZERA ITALIANA 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙495˙020 €
 EC contributo 1˙495˙020 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-10-01   -   2017-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITA DELLA SVIZZERA ITALIANA

 Organization address address: VIA LAMBERTENGHI 10 A
city: LUGANO
postcode: 6904

contact info
Titolo: Ms.
Nome: Paola
Cognome: Colferai
Email: send email
Telefono: +41 58 664818

CH (LUGANO) hostInstitution 1˙495˙020.00
2    UNIVERSITA DELLA SVIZZERA ITALIANA

 Organization address address: VIA LAMBERTENGHI 10 A
city: LUGANO
postcode: 6904

contact info
Titolo: Prof.
Nome: Michael
Cognome: Bronstein
Email: send email
Telefono: +41 58 6664120
Fax: +41 58 6664536

CH (LUGANO) hostInstitution 1˙495˙020.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

vision    data    imaging    recognition    geometry    pattern    metric    medical    similarity    computational    computer    model   

 Obiettivo del progetto (Objective)

'Similarity is one of the most fundamental notions encountered in problems practically in every branch of science, and is especially crucial in image sciences such as computer vision and pattern recognition. The need to quantify similarity or dissimilarity of some data is central to broad categories of problems involving comparison, search, matching, alignment, or reconstruction. The most common way to model a similarity is using metrics (distances). Such constructions are well-studied in the field of metric geometry, and there exist numerous computational algorithms allowing, for example, to represent one metric using another by means of isometric embeddings. However, in many applications such a model appears to be too restrictive: many types of similarity are non-metric; it is not always possible to model the similarity precisely or completely e.g. due to missing data; some objects might be mutually incomparable e.g. if they are coming from different modalities. Such deficiencies of the metric similarity model are especially pronounced in large-scale computer vision, pattern recognition, and medical imaging applications. The ambitious goal of this project is to introduce a paradigm shift in the way we model and compute similarity. We will develop a unifying framework of computational similarity geometry that extends the theoretical metric model, and will allow developing efficient numerical and computational tools for the representation and computation of generic similarity models. The methods will be developed all the way from mathematical concepts to efficiently implemented code and will be applied to today’s most important and challenging problems in Internet-scale computer vision and pattern recognition, shape analysis, and medical imaging.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

QUANTIF (2010)

Quantitative Multidimensional Imaging of Interfacial Fluxes

Read More  

MINT (2012)

Mechanically Interlocked Carbon Nanotubes

Read More  

TESTDE (2012)

Testing the Dark Energy Paradigm and Measuring Neutrino Mass with the Dark Energy Survey

Read More