CARBONSINK

Life beneath the ocean floor: The subsurface sink of carbon in the marine environment

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙945˙695 €
 EC contributo 1˙945˙695 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-12-01   -   2017-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Dr.
Nome: Alexandra
Cognome: Turchyn
Email: send email
Telefono: +44 1223 333479

UK (CAMBRIDGE) hostInstitution 1˙945˙695.20
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: 441223000000
Fax: 441223000000

UK (CAMBRIDGE) hostInstitution 1˙945˙695.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

environments    carbonate    situ    inorganic    minerals    deep    sediments    balance    dissolved    fate    timescales    calcium    marine    floor    crust    co    oceanic    mass    biosphere    cycle    subsurface    ocean    carbon    global    us    excess   

 Obiettivo del progetto (Objective)

'One prominent idea for mitigating global climate change is to remove CO2 from the atmosphere by storing it in fluids in the natural environment; for example dissolved within sediments below the ocean floor or in oceanic crust. This carbon sequestration is popular because it would allow us to place carbon into semi-permanent (on human timescales) storage, ‘buying time’ to wean us from our dependence on carbon-based energy sources. Application of such a mitigation technique presumes knowledge of what will happen to carbon when it is dissolved in various environments. Studies of naturally produced excess dissolved CO2 are, however, equivocal; this lack of knowledge represents a huge deficit in our comprehension of the global carbon cycle and specifically the processes removing carbon from the surface of the planet over geological timescales.

This proposal will resolve the sink for CO2 within marine sediments and oceanic crust. Beneath much of the ocean floor exists the ‘deep biosphere’, microbial populations living largely in the absence of oxygen, consuming organic carbon that has fallen to the sea floor, producing a large excess of dissolved inorganic carbon. This dissolved inorganic carbon can diffuse back to the ocean or can precipitate in situ as carbonate minerals. Previous attempts to quantify the flux of carbon through the deep biosphere focused mostly on studies of sulfur and carbon, and these studies cannot reveal the fate of the produced inorganic carbon. I propose a novel approach to constrain the fate of carbon through the study of the subsurface calcium cycle. Calcium is the element involved in precipitating carbon as in situ carbonate minerals and thus will directly provide the required mass balance to determine the fate of CO2 in the marine subsurface. This mass balance will be achieved through experiments, measurements, and numerical modeling, to achieve the primary objective of constraining the fate of carbon in submarine environments.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NETSIGNAL (2013)

Signal Formation in Synaptic Circuits with Astroglia

Read More  

PRIMATESVS (2010)

Identification and characterization of primate structural variation and an assessment of intra-specific patterns of selection and copy-number variation

Read More  

STRESSMETABOL (2012)

Stress signaling mechanisms in metabolism and inflammation and related disorders

Read More