SEDBIOGEOCHEM2.0

Hardwiring the ocean floor: the impact of microbial electrical circuitry on biogeochemical cycling in marine sediments

 Coordinatore STICHTING KONINKLIJK NEDERLANDS INSTITUUT VOOR ZEEONDERZOEK (NIOZ) 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙497˙996 €
 EC contributo 1˙497˙996 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-01   -   2017-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    STICHTING KONINKLIJK NEDERLANDS INSTITUUT VOOR ZEEONDERZOEK (NIOZ)

 Organization address address: Landsdiep 4
city: DEN HOORN TEXEL
postcode: 1797 SZ

contact info
Titolo: Dr.
Nome: Filip
Cognome: Meysman
Email: send email
Telefono: +31 113577450
Fax: +31 113573616

NL (DEN HOORN TEXEL) hostInstitution 1˙497˙996.00
2    STICHTING KONINKLIJK NEDERLANDS INSTITUUT VOOR ZEEONDERZOEK (NIOZ)

 Organization address address: Landsdiep 4
city: DEN HOORN TEXEL
postcode: 1797 SZ

contact info
Titolo: Prof.
Nome: Henk
Cognome: Brinkhuis
Email: send email
Telefono: 31222369422
Fax: 31222319674

NL (DEN HOORN TEXEL) hostInstitution 1˙497˙996.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cycling    redox    biogeochemical    phenomenon    distance    transport    microbial    electron    laboratory    recently    pathways    sediments    cells    marine   

 Obiettivo del progetto (Objective)

'Although it is well known that microbial cells can exhibit sophisticated cooperative behaviour, none of the recent advancements in geomicrobiology has been so perplexing as the proposal that microbial populations are capable of fast, electrical communication over centimetre scale distances. This metabolic tour-de-force was recently documented from laboratory incubations with marine sediments. Clearly, the phenomenon is so thought provoking, and its consequences are so far reaching, that independent verification is absolutely needed. Recently, my research group has collected strong evidence that long-distance electron transport is not merely a laboratory phenomenon, but that it effectively happens under in situ conditions in marine sediments. These observations open a broad avenue for new research, since at present, we no understanding of the prevalence of long-distance electron transport in natural environments, let alone, its impact on biogeochemical cycling. In response, this ERC project proposes an in depth investigation into long-distance electron transport in aquatic sediments: when and where does it occur, which redox pathways and microbial players are involved, what is the effective mechanism of electron transfer, and what are its biogeochemical implications. Clearly, this idea of long-distance electron transport would add a whole new dimension to microbial ecology, radically changing our views on microbial cooperation. Yet, the consequences for carbon sequestration and mineral cycling in sediments and soils could even be more astounding, allowing an unprecedented flexibility in redox pathways. Since the same type of extracellular electron transport is at work in engineered systems like microbial fuel cells, it could also improve our understanding of such biotechnological applications.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ATMMACHINE (2013)

"Structural mechanism of recognition, signaling and resection of DNA double-strand breaks"

Read More  

SPECIALS (2013)

"Species range shifts, aboveground-belowground community reassembly and consequences for ecosystem functioning"

Read More  

CTLANDROS (2011)

Reactive Oxygen Species in CTL-mediated Cell Death: from Mechanism to Applications

Read More