GFTIPFD

"Geometric function theory, inverse problems and fluid dinamics"

 Coordinatore UNIVERSIDAD AUTONOMA DE MADRID 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Spain [ES]
 Totale costo 1˙121˙400 €
 EC contributo 1˙121˙400 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-10-01   -   2017-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSIDAD AUTONOMA DE MADRID

 Organization address address: CALLE EINSTEIN, CIUDAD UNIV CANTOBLANCO RECTORADO 3
city: MADRID
postcode: 28049

contact info
Titolo: Dr.
Nome: Daniel
Cognome: Faraco Hurtado
Email: send email
Telefono: +34 914977642
Fax: +34 914974889

ES (MADRID) hostInstitution 1˙121˙400.00
2    UNIVERSIDAD AUTONOMA DE MADRID

 Organization address address: CALLE EINSTEIN, CIUDAD UNIV CANTOBLANCO RECTORADO 3
city: MADRID
postcode: 28049

contact info
Titolo: Ms.
Nome: María Del Carmen
Cognome: Puerta Fernandez
Email: send email
Telefono: +34 91 497 8663
Fax: +34 91 497 5269

ES (MADRID) hostInstitution 1˙121˙400.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

problem    existence    oacute       first    solutions    calder    us    inclusions    dynamics    equations    dimensional    schr    conjecture    equation    weak    dinger    fluid    linear    ouml    inverse    close    uniqueness    differential    theory    elliptic   

 Obiettivo del progetto (Objective)

'The project will strike for conquering frontier results in three capital areas in partial differential equations and mathematical analysis: Elliptic equations and systems, fluid dynamics and inverse problems.

I propose to tackle the central problems in these areas with a new perspective based on the theory of differential inclusions. A thorough study of oscillating div-curl couples in this framework will lead us to the long expected higher dimensional version of the Tartar conjecture. The corresponding analysis of differential inclusions for gradient fields will lead to new results respect to the existence, uniqueness and regularity theory on the so far intractable theory of higher dimensional Beltrami systems. Next we will concentrate in weak solutions to the classical non linear equations governing fluid dynamics. A reformulation of these equations as differential inclusions enables a much more rich theory of weak solutions than the classical one. With this new tool at hand,we will close several long standing questions about existence, uniqueness and contour dynamics. The third part of the project is devoted to inverse problems in p.d.e. The most famous inverse problem is Calderón conductivity problem which asks whether the Dirichlet to Neumann map of an elliptic equation determines the coefficients. The problem is still open in three or more dimensions but a new formulation as a differential inclusion will allow us to close the 1980 Calderón conjecture by constructing new invisible materials. In dimension n=2 the recent approach based on quasiconformal theory will lead to the first regularization scheme valid for discontinuous conductivities and first results for non linear equations. For the stationary Schrödinger equation I propose to exploit a fascinating connection with the convergence to initial data of the non elliptic time dependent Schrödinger equation.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SAEMPL (2013)

Scattering and absorption of electromagnetic waves in particulate media

Read More  

JAWEVOL (2013)

The Origin of Jawed Vertebrates and the Evolution of Morphology in Deep Time

Read More  

ANXIETY MECHANISMS (2011)

Neurocognitive mechanisms of human anxiety: identifying and targeting disrupted function

Read More