NAT_CAT

Nature Inspired Transition Metal Catalysis

 Coordinatore UNIVERSITEIT VAN AMSTERDAM 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 2˙500˙000 €
 EC contributo 2˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2018-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT VAN AMSTERDAM

 Organization address address: SPUI 21
city: AMSTERDAM
postcode: 1012WX

contact info
Titolo: Ms.
Nome: Jo
Cognome: Lansbergen
Email: send email
Telefono: +3120 5256915
Fax: +3120 5257675

NL (AMSTERDAM) hostInstitution 2˙500˙000.00
2    UNIVERSITEIT VAN AMSTERDAM

 Organization address address: SPUI 21
city: AMSTERDAM
postcode: 1012WX

contact info
Titolo: Prof.
Nome: Joost Nicolaas Hendrik
Cognome: Reek
Email: send email
Telefono: +3120 5256437
Fax: +3120 5255604

NL (AMSTERDAM) hostInstitution 2˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

ligands    catalysts    cavity    selectivity    metal    groups    catalyst    lower    synthetic    catalysis    sphere    transition    active    sites    enzymes    isolated    functional    larger    arrive   

 Obiettivo del progetto (Objective)

'The development of new approaches in transition metal catalysis is of utmost importance since it provides the future tools required to arrive at a sustainable society. Interestingly, the field of transition metal catalysis has been dominated by the relatively simple dogma that the activity and the selectivity of the catalyst is determined by the interplay between the metal and the ligands that are coordinated to the metal. By developing new ligands, new catalyst can be uncovered that display specific reactivity and selectivity. Nature on the other hand, uses a much larger tool-box to arrive at catalytic systems that are generally far more active and selective than the man-made catalysts. Enzymes often use multimetallic sites, or multi functional groups that work in concert. Importantly, Enzymes are much larger than synthetic catalysts, and take advantage of the second sphere around an active site by 1) creating a sterically constrained cavity around it leading to entatic states, i.e. deformed intermediate states that lead to lower energy barriers to the product 2) positioning functional groups within the cavity to properly orient and activate the substrate, by lower the transition state via secondary interactions. In the current proposal we control catalyst properties by encapsulation. Will will use isolated natural active sites (and models theirof) and install these in well-defined cavities and study their properties. Can we create a second coordination sphere such that we can get activities and selectivies similar to that of the original enzyme? For example, we aim for nitrogenase activity by putting isolated active sites in synthetic cages.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ITERQCD (2010)

Iterative solution of the QCD perturbative expansion

Read More  

BRAINIMAGES (2014)

"How do we keep apart internally generated mental images from externally induced percepts? Dissociating mental imagery, working memory and conscious perception."

Read More  

FSA (2012)

Fluid Spectrum Acess

Read More