ECOFIRE-NANO

New generation of eco-benign multifunctional layered double hydroxide (LDH)-based fire retardant and nanocomposites

 Coordinatore FUNDACION IMDEA MATERIALES 

 Organization address address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
city: GETAFE
postcode: 28906

contact info
Titolo: Mr.
Nome: Miguel ángel
Cognome: Rodiel
Email: send email
Telefono: 34915493422

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-12-01   -   2016-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FUNDACION IMDEA MATERIALES

 Organization address address: CALLE ERIC KANDEL 2 PARQUE CIENTIFICO Y TECNOLOGICO TECNOGETAFE
city: GETAFE
postcode: 28906

contact info
Titolo: Mr.
Nome: Miguel ángel
Cognome: Rodiel
Email: send email
Telefono: 34915493422

ES (GETAFE) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

efficiency    nanoscale    retardants    ldh    property    biobased    anti    day    environment    polymeric    materials    flammable    intumescent    sustainable    fire    multifunctional    retardance    fr    modifier    retardant    excellent    combination    polymer    uv    chosen    acid   

 Obiettivo del progetto (Objective)

'Polymeric material products are ubiquitous in various fields in day-to-day life, while a key limitation is most of polymeric materials are flammable. Aim to improve the fire retardancy of polymeric materials, circumvent the drawback of traditional fire retardants (FRs), create novel functionality, in this project, new generation sustainable environment-friendly multifunctional FR and high performance polymer nanocomposites are developed via combination of innovative molecular design, sophisticated chemical synthesis and advanced processing. Layered double hydroxide (LDH), low-cost sustainable environment-friendly nanofiller with good fire retardance, is chosen as the main candidate for offering the fire retardant framework. The multifunctional biobased modifier, β-cyclodextrin(CD)-based (char agent), with high fire retardance, excellent anti-UV property (via combined with chalcone extracted from plant) functional group and strong ionic-exchange capability are designed, synthesized, characterized and used to modify LDH in order to develop multifunctional LDH with excellent fire retardance and anti-UV property. Phytic acid sodium salt derived from plants will be used as co-modifier for LDH in order to provide biobased phosphorus storage (acid source). This combination will form nanoscale biobased intumescent fire retardants in the interlayer of LDH, leading to the fire retardant efficiency is improved significantly compared with traditional organic surfactant (being flammable) modified LDH. To evaluate fire retardant efficiency, anti-UV property and other properties, two typical polymers, epoxy resin and PP, are chosen as polymer models. As novel sustainable multifunctional nanoscale fire retardant, it integrates the present advantages from inorganic-FR, intumescent-FR, nano-FR and reactive-FR in the state-of-the-art and possesses new properties, owning the feathers of sustainability, environmental friendliness, high efficiency, smoke suppression and multifunction.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SUPRANANOASSEMBLY (2011)

Complex Supramolecular Architectures via the Micellization of Semicrystalline-Coil Block Copolymers: Synthesis and Hierarchical Self-Assembly

Read More  

PEPMIP (2012)

Robust affinity materials for applications in proteomics and diagnostics

Read More  

MINILUBES (2008)

Mechanisms of interactions in nano-scale of novel ionic lubricants with functional surfaces

Read More