NEUROCOMMUNICATION

The Molecular Communication Mechanism of Motor Neuron Survival and Synapse Maintenance

 Coordinatore TEL AVIV UNIVERSITY 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙499˙800 €
 EC contributo 1˙499˙800 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-02-01   -   2018-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TEL AVIV UNIVERSITY

 Organization address address: RAMAT AVIV
city: TEL AVIV
postcode: 69978

contact info
Titolo: Dr.
Nome: Eran
Cognome: Perlson
Email: send email
Telefono: -5208227

IL (TEL AVIV) hostInstitution 1˙499˙800.00
2    TEL AVIV UNIVERSITY

 Organization address address: RAMAT AVIV
city: TEL AVIV
postcode: 69978

contact info
Titolo: Ms.
Nome: Lea
Cognome: Pais
Email: send email
Telefono: 97236408774
Fax: 97236409697

IL (TEL AVIV) hostInstitution 1˙499˙800.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

environment    survival    als    reveal    cells    time    function    signaling    motor    synapse    communication    mechanisms    neuron    right    neurodegeneration    signals    trafficking    cell    molecular    mediated    mechanism    alterations   

 Obiettivo del progetto (Objective)

'In order to survive and maintain normal function, the cell depends on a dynamic system of spatial specificity and fidelity of signaling pathways that can respond to both internal and external changes over space and time. This cell-cell communication is mediated by ligand-receptor mechanisms. In the case of highly polarized cells such as neurons trafficking mechanisms mediated by motor proteins are used to achieve precise signal targeting. Alterations in the trafficking machinery may results in incorrect signaling, that in some cases leads to neurodegeneration. An example for such phenomenon may be found in Amyotrophic Lateral Sclerosis (ALS). ALS is a motor neuron disease characterized by a non-cell autonomous neurodegeneration process, which involves neighboring cells via an unknown mechanism. This proposal focuses on the elucidation of basic cell-cell communication mechanisms by using the motor neuron degeneration process as a model. I aim to reveal critical communication mechanisms between the neuron and its environment for cell survival and synapse maintenance. My working hypothesis is that alterations in extrinsic and intrinsic signals may lead to the neurodegeneration seen in ALS. I will develop unique compartmental platforms mimicking the natural environment of the motor neuron. Then using differential “omics” approaches followed by functional assays I will reveal and characterized vital factors essential to neuron synapse integrity and neuron survival. Using state of the art live-cell imaging techniques I will reveal also the molecular mechanism for signals localization and targeting driven by the motor protein dynein. I will elucidate the molecular mechanism of neuronal communication with its diverse environment essential to its survival and proper function. The project will bring revolutionary new mechanistic insight to a truly fundamental problem in cell biology, how the cell communicates and how signals arrive at the right place at the right time?'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

IOWAGA (2010)

Interdisciplinary Ocean Wave for Geophysical and other applications

Read More  

MITOUPR (2013)

Mitochondrial unfolded protein response and the role in ageing

Read More  

NOMBQUANT (2014)

Novel phases in quantum gases: from few-body to many-body physics

Read More