MIRTURN

Mechanisms of microRNA biogenesis and turnover

 Coordinatore FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙782˙200 €
 EC contributo 1˙782˙200 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Novartis Forschungsstiftung

 Organization address address: Maulbeerstrasse 66
city: BASEL
postcode: 4058

contact info
Titolo: Mrs.
Nome: Dorothy
Cognome: Searles
Email: send email
Telefono: +41 61 6972982
Fax: +41 61 6973976

CH (BASEL) beneficiary 0.00
2    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH

 Organization address address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058

contact info
Titolo: Dr.
Nome: Helge
Cognome: Grosshans
Email: send email
Telefono: +41 61 6976675
Fax: +41 61 6973976

CH (BASEL) hostInstitution 1˙782˙200.00
3    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH

 Organization address address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058

contact info
Titolo: Mrs.
Nome: Dorothy
Cognome: Searles
Email: send email
Telefono: +41 61 6972982
Fax: +41 61 6973976

CH (BASEL) hostInstitution 1˙782˙200.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

components    mirna    us    genes    gene    physiological    cell    disease    machinery    layer    elegans    mechanisms    regulation    mirnas    relevance    regulated    regulators   

 Obiettivo del progetto (Objective)

'MicroRNAs (miRNAs) are a novel class of genes, accounting for >1% of genes in a typical animal genome. They constitute an important layer of gene regulation that affects diverse processes such as cell differentiation, apoptosis, and metabolism. Despite such critical roles, deciphering the mechanism of action of miRNAs has been difficult, leading to multiple, partially contradictory, models of miRNA activity. Moreover, adding an additional layer of complexity, it is now emerging that miRNA activity is regulated by various mechanisms that we are only beginning to identify. Our objective is to understand how miRNAs are regulated under physiological conditions, in the roundworm Caenorhabditis elegans. We will focus on pathways of miRNA turnover, an issue of fundamental importance that has received little attention because miRNAs are widely held to be highly stable molecules. However, miRNA over-accumulation causes aberrant development and disease, prompting us to test rigorously whether degradation can antagonize miRNA activity and either identify the machinery involved, or confirm the dominance of other regulatory modalities, whose components we will identify. C. elegans is the organism in which miRNAs and many components of the miRNA machinery were discovered. However, previous studies emphasized genetics and cell biology approaches, limiting the degree of mechanistic insight that could be obtained. In addition to exploiting the traditional strengths of C. elegans, we will therefore develop and apply biochemical and genomic techniques to obtain a comprehensive understanding of miRNA regulation, enabling us to demonstrate both molecular mechanisms and physiological relevance. Given the importance of miRNAs in development and disease, identifying the regulators of these tiny gene regulators will be both of scientific interest and biomedical relevance.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

GROLEO (2011)

The Genetics and Physiology of Growth and Size Determination

Read More  

CALENDARS (2013)

Calendars in late Antiquity and the Middle Ages: standardization and fixation

Read More  

CADRE (2009)

Cardiac Death and Regeneration

Read More