Coordinatore | NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
Organization address
address: HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS contact info |
Nazionalità Coordinatore | Greece [EL] |
Totale costo | 1˙125˙353 € |
EC contributo | 1˙125˙353 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-IAPP |
Funding Scheme | MC-IAPP |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-03-01 - 2017-02-28 |
# | ||||
---|---|---|---|---|
1 |
NATIONAL TECHNICAL UNIVERSITY OF ATHENS - NTUA
Organization address
address: HEROON POLYTECHNIOU 9 ZOGRAPHOU CAMPUS contact info |
EL (ATHINA) | coordinator | 269˙395.50 |
2 |
OXFORD LASERS LTD
Organization address
address: MOORBROOK PARK UNIT 8 contact info |
UK (DIDCOT) | participant | 614˙063.23 |
3 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | participant | 241˙894.68 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'LaserMicroFab proposes a joint research programme exploiting on the knowledge and expertise of two academic partners (National Technical University of Athens (NTUA) and CNRS-LP3) and one SME, Oxford Lasers (OL) through inter-sectorial exchange of knowledge, networking activities and training in the areas of advanced laser processing for organic electronic devices and biosensors. The goal for this project is to develop Laser digital micro-fabrication processes such as selective laser micro and nano-patterning, laser micro-curing and laser micro-printing for precision patterning of complex materials, such as metallic nanoparticle (NP) inks and organic materials. The developed laser processes will be employed for the micro-curing of metallic nanoparticle (NP) interconnects to achieve submicron spatial resolution, for the nanostructuring of ultrathin (<50 nm) layers and for the printing of organic semiconductors for electronics and/or photovoltaics applications. Moreover, patterns of biomolecules will be printed using the laser micro-printing process with high spatial resolution (<10 μm) without compromising the viability of these delicate structures. The integration of laser micro-fabrication processes and the design of a laser platform based on the Oxford Lasers equipment (DPSS pulsed lasers ranging from nanosecond (ns) to femtosecond (fs) duration pulses) will be achieved, in collaboration with the research groups from NTUA and the CNRS-LP3. The success of this project will have a great impact on the market potential of Oxford Lasers’ products and the research excellence of NTUA and CNRS-LP3 in the fields of materials engineering, biotechnology and chemical engineering, ensuring its multidisciplinary character. At the end of this project, a full set of parameters will be established and optimised as an innovative tool for material processing and will be further exploited for new applications and market areas.'
"Development of the Cephalochordate amphioxus, Branchiostoma lanceolatum, as a new model for regeneration"
Read MoreEcology of herbivore-induced leaf-to-root signaling in plants: Finding and testing the elusive messengers
Read MoreQuality of chronic kidney disease management in people with diabetes in England after the introduction of new primary care policies for diabetes and renal disease
Read More