Coordinatore | UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 231˙283 € |
EC contributo | 231˙283 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-07-29 - 2015-07-28 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
UK (BRISTOL) | coordinator | 231˙283.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The overarching aim of the proposed research is to advance the understanding and design of conjugated oligomeric materials with tunable optoelectronic properties, in particular materials based on oligo(aniline)s, for applications in the EU priority area of organic electronics. To underpin and support this innovation, key new routes to novel molecular architectures and nanostructures will be explored.
The proposed research deals with the designed synthesis of a library of nanostructures based on star-like oligo(aniline)s from the Buchwald-Hartwig cross-coupling strategy and ionic self-assembly technique. Controlling the molecular architecture and acids dopants will allow for tuning of and controll over band gaps, physical dimensions and localized defects. This approach will lead to optimised nanostructured morphologies and ensure efficient charge separation and transport. As a result, enhanced mobility, sensitivity and selective interactions with external stimuli will offer smart nanomaterials for gas sensors.
The project will open unexplored avenues in this priority area of organic electronics through its inter- and multidisciplinary approach, i.e., the proposed research will rely on modern synthetic organic chemistry, chemicophysical analyses of optoelectronic properties and structure relationships, self-assembly in the solid state, device fabrication and testing.
It is expected that the outcomes of this proposed research will substantially impact across and beyond the mentioned range of disciplines. This project will therefore 1) aid in continuing to establish European excellence and competitiveness in the field of organic electronics, a priority research area in the European Research Area, and 2) is expected to accelerate the development of selective and tunable sensors, which will have major impact on ERA scientific communities, public health and EU security.'