QCDOM

Quantum Coherence and Decoherence in Cavity Optomechanics

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Tobias J.
Cognome: Kippenberg
Email: send email
Telefono: +41 796 35 00 16

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 184˙709 €
 EC contributo 184˙709 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-12-01   -   2015-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Tobias J.
Cognome: Kippenberg
Email: send email
Telefono: +41 796 35 00 16

CH (LAUSANNE) coordinator 184˙709.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cooled    first    nanomechanical    silica    group    mechanical    optomechanical    fundamental    quantum    time    coherent    ground    resonator    upon    developments    years          optomechanics    optical    coupling   

 Obiettivo del progetto (Objective)

'Rapid progress in the field of optomechanics has undergone a paradigm shift in the last two years. It is now possible to use light to prepare and sense the quantum ground state of a nanomechanical oscillator. Alongside parallel developments in electromechanics, this success marks the emergence of a third wave of quantum technology based on mechanical systems, following in the footsteps of atomic physics in the 1970s and solid state spin ca. 10 years ago. The new field of quantum optomechanics faces key challenges on several fronts, including execution of protocols for preparation and readout of nontrivial quantum states, mitigation of fundamental sources of mechanical decoherence, and the search for robust and field-distributable architectures. The following proposal takes aim at this new threshold, exploring fundamental and practical aspects of coherence in a mechanical system optomechanically-cooled to near the quantum ground state. We build upon the capabilities of a state-of-the-art optomechanical system developed by the host group of T. J. Kippenberg at EPFL, consisting of a cryogenically-cooled silica microcavity with strongly coupled, high-Q optical and mechanical resonances. Using the recent development of quantum-coherent optomechanical coupling, we propose to demonstrate, for the first time, quantum-coherent state transfer of a nanomechanical resonator onto an optical field. Second, exploiting the tools of cryogenic optomechanics, we seek to observe and control *resonant* coupling of a micromechanical resonator to a two-level-fluctuator for the first time. Third, building upon developments in the integration of ultr-high-Q SiN nanobeams and Silica micro-disk resonators, we propose to realize a robust chipscale optomechanical system suitable for ground-state cooling using a simple table-top cryo-cooler. (The applicant was trained at Caltech in the quantum optics group of J. Kimble, and brings significant cross-disciplinary expertise to the project.)'

Altri progetti dello stesso programma (FP7-PEOPLE)

NEW SEX SAME GENES (2010)

Contradictory phenotypic and genetic sex can lead to great insights into sex chromosome evolution

Read More  

RELATE (2011)

Trans-European Research Training Network on Engineering and Provisioning of Service-Based Cloud Applications

Read More  

SQUIRREL (2014)

Sensing Quantum Information Correlations

Read More