KINETICCF

Mathematical Theory of Kinetic Equations and Applications to Coagulation and Fragmentation processes

 Coordinatore THE UNIVERSITY OF BIRMINGHAM 

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Ms.
Nome: Erica
Cognome: Conway
Email: send email
Telefono: 441214000000
Fax: 441214000000

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-27

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM

 Organization address address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT

contact info
Titolo: Ms.
Nome: Erica
Cognome: Conway
Email: send email
Telefono: 441214000000
Fax: 441214000000

UK (BIRMINGHAM) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

coagulation    techniques    boltzmann    equation    entropy    kinetic    cell    models    dynamics    rigorous    behavior    asymptotic    theory    fragmentation    collective    perturbation   

 Obiettivo del progetto (Objective)

'The work we propose focuses on the rigorous mathematical development of kinetic theory and the applications of its techniques to the study of models of population dynamics and cell fragmentation and growth in biology, to the dynamics of coagulation and fragmentation processes in physics, and to more recently developed models in the field of collective behavior. The aim is then twofold: to advance the understanding of basic equations in kinetic theory, such as the Boltzmann equation, and to employ known or newly developed techniques in this field to the rigorous treatment of models in the above mentioned areas, such as the Becker-Döring equation for nucleation, the growth-fragmentation model for cell populations, or individual-based models for collective behavior.

The proposed work on the Boltzmann equation is a continuation of previous works of the applicant in collaboration with M. Bisi, B. Lods and C. Mouhot, mainly based on perturbation and entropy techniques in the study of asymptotic behavior of the elastic or inelastic Boltzmann equation.The work on applications builds on recent advances showing the successful applicability of techniques form kinetic theory in some models involving coagulation and fragmentation. In particular, we expect to obtain improved results on the asymptotic behavior of the growth-fragmentation equation, including the development and analysis of computer code to calculate the asymptotic profile; to apply entropy techniques to the full coagulation-fragmentation equation in order to study its speed of convergence to equilibrium; and to be able to apply perturbation techniques in the study of the scaling hypothesis for coagulation.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BIOMEDMICROFLUIDICS (2012)

Modelling and Optimization of Microfluidic Devices for Biomedical Applications

Read More  

MICRODROPLETS (2010)

Characterizing Surface-Supported Microdroplets for Optofluidics Applications

Read More  

EUPOLCON (2010)

Conceptualizing representative democracy in the EU polity by re-thinking classical key conceptual clusters for the EU multi-level polity

Read More