NANOEP

Single Cell Electroporation and DNA dynamics: from bulk to micro/nanofluidics

 Coordinatore TECHNISCHE UNIVERSITEIT DELFT 

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Mrs.
Nome: Jose
Cognome: Van Vugt
Email: send email
Telefono: 31152787413

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Mrs.
Nome: Jose
Cognome: Van Vugt
Email: send email
Telefono: 31152787413

NL (DELFT) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cell    treatment    cells    time    plasmid    electrotransfer    tools    electroporation    gene    dna    membrane    resolution    temporal    micro    permeabilization    nano    transfection   

 Obiettivo del progetto (Objective)

'Electroporation or electropermeabilization is the electrical disruption of a cell’s membrane to introduce foreign DNA, RNAs, drugs, proteins, or other therapies into the living cells. This technique is one of the most popular non-viral gene transfer methods for both in vitro and in vivo application. However, this method is suffering from several limitations such as: i) low transfection efficiency, ii) poor cell viability, and iii) random uptake. Multiple applications of electroporation in biotechnology and medicine rely on trial and error optimization of treatment conditions rather than knowledge of pores, dynamics and electrotransfer of DNA, due to the limited spatial and temporal resolution of traditional tools. More interesting, the phenomena behind electro-mediated membrane permeabilization to plasmid DNA (~4.5 kbp) have been shown to be significantly more complex than those for small molecules. Therefore, successful DNA electrotransfer into cells depends not only on cell permeabilization (or poration) but also on the way plasmid DNA interacts with the membrane and, once into the cell, migrates toward the nuclei.

The main aim of this proposal to understand and control the transport of DNA in electroporation treatment such that stable, safe and efficient gene transfection can be achieved. Here I will use single molecule techniques (such as AFM, FRET, confocal and optical tweerers) with high spatio-temporal resolution to investigate the process of electroporation at different length (from bulk to micro/nano) and time scale (ranging from micro-seconds to hours). In addition, these unique tools will be integrated with novel micro/nanofluidics to investigate the electroporation and electrokinetic flow of DNA at micro/nano-scale. I will observe all the processes in real time with unprecedented details and quantitatively examine the kinetics of pore formation/resealing and cytoplasmic trafficking of DNA.'

Altri progetti dello stesso programma (FP7-PEOPLE)

RAPID (2012)

Rheumatoid Arthritis and Periodontal Inflammatory Disease (RAPID)

Read More  

EUROSAT4PHENOCHANGES (2013)

Monitoring vegetation phenology at multiple scales in Europe from the GMES satellite sensor time-series: a special consideration to natura2000 areas

Read More  

NCAT (2013)

Nudix hydrolases in Cancer Therapy

Read More