Coordinatore | IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 231˙283 € |
EC contributo | 231˙283 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-03-05 - 2015-03-04 |
# | ||||
---|---|---|---|---|
1 |
IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD contact info |
UK (LONDON) | coordinator | 231˙283.20 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Chirality is a universal phenomenon in nature. Many pharmaceuticals, nutraceuticals, and agricultural chemicals have their own stereoisomers, with each enantiomer showing a unique biological activity. The production of pure enantiomer is therefore essential especially for medication safety and efficacy. In this project, a novel membrane reactor technique is proposed for efficient production of important chiral intermediates in the pharmaceutical industry and agrochemistry. New homochiral metal-organic framework (MOF) materials and membranes will be integrated with the latest development in ceramic hollow fibres, in an objective of generating a catalytic membrane reactor (CMR) coupling asymmetric synthesis and enantioselective separation into a single micro-tube. Such CMR to be developed is composed of a homochiral MOF membrane layer supported on a ceramic hollow fibre substrate with a unique dual-structure, i.e. a porous functional layer for preparing the MOF membrane and a finger-like layer where MOF-based asymmetric catalysts can be deposited. Reactants fed to the tube side of the hollow fibre substrate will be converted into desired enantiomer and by-products. Meanwhile, the desired enantiomer recognized by the MOF membrane materials coated on the exterior functional layer will adsorb on the membrane surface, followed by diffusing through the membrane for enantioselective separation, with the by-products rejected by the membrane and collected at the outlet. Such an original interdisciplinary approach of producing chiral intermediates involves the latest multidisciplinary knowledge and techniques in material, chemistry, membrane, chemical engineering and catalysis, and has not yet been attempted to date. Moreover, the successful delivery of this project allows possible assembling of such micro-tubular CMR into an industrial scale prototype device or system, for a larger scale production of chiral intermediates.'
Mobility Programme of Slovak Academy of Sciences: Supportive Fund for Excellent Scientists
Read MoreEffects of pleiotropy and drift on adaptation in static and changing environments
Read MoreIn vitro reconstitution of the S. pombe interphase microtubule cytoskeleton
Read More