FISHSTRESS

The impact of nutrition on fish under multiple stress situations: the influence of lipids in sensitivity to metals and thermal stress

 Coordinatore UNIVERSITE CATHOLIQUE DE LOUVAIN 

 Organization address address: Place De L'Universite 1
city: LOUVAIN LA NEUVE
postcode: 1348

contact info
Titolo: Prof.
Nome: Jean-François
Cognome: Rees
Email: send email
Telefono: +32 10 473517

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 169˙800 €
 EC contributo 169˙800 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2016-01-11

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE CATHOLIQUE DE LOUVAIN

 Organization address address: Place De L'Universite 1
city: LOUVAIN LA NEUVE
postcode: 1348

contact info
Titolo: Prof.
Nome: Jean-François
Cognome: Rees
Email: send email
Telefono: +32 10 473517

BE (LOUVAIN LA NEUVE) coordinator 169˙800.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

metal    occurring    thermal    productivity    cells    biological    nutritional    stress    levels    stressors    organisation    influence    fish    multiple    exposure    fishstress    fa   

 Obiettivo del progetto (Objective)

'In Europe, natural and man-engineered aquatic ecosystems undergo multiple anthropogenic pressures that challenge their good functioning and/or productivity. Most of ecotoxicological studies have been focusing on single stressor whereas the combined effects of multiple stressors may not simply be additive, but antagonistic or synergistic. Therefore, the FishStress project addresses the question of multiple stressors in fish with a focus on nutrient/nutritional stress, chemical stress induced by metals and thermal stress since these are the drivers of ecosystem health and aquaculture productivity. The main objectives are to determine the effect of nutritional quality, tissue lipid status and selected lipids on the response of fish cells, tissues and individuals to metal (Cd and MeHg) and thermal stress across different levels of biological organisation and to verify to what extent multiple stress effects occurring at higher levels of organisation can be predicted/explained based on observations of effects occurring at lower levels. During the 2 years of the project, different experiments on fish (zebra fish and rainbow trout) will be conducted. On one hand the influence of different FA profiles of fish on their further sensitivity to metal exposure and/or thermal stress will be studied. On the other hand, the influence of metal exposure or thermal stress during fish maturation on the assimilation of different FA will be investigated. The investigation will be conducted at different levels of biological organisation (from cells to population) and will involve molecular biological measurements (e.g. genomic studies, antioxidant enzymes activities) as well as fitness' indicators (e.g. growth, reproduction). Thanks to this approach, the FishStress project will provide a solid framework to better understand multiple stressors on fish and to link the biological effects across biological levels of organisation.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CNVIMPACTGEXP (2010)

Deep surveying of CNV impact on Mouse transcriptome complexity and regulation

Read More  

CGCOMPLEXFLUIDFLOW (2014)

Systematic and thermodynamically consistent coarse graining the flow of complex fluids

Read More  

CD44 CARCINOGENESIS (2009)

A new role for CD44 in carcinogenesis

Read More