REPROL53U48

Characterization of direct reprogramming-regulating factors LIN-53 and USP-48

 Coordinatore MAX-DELBRUCK-CENTRUM FUR MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT 

 Organization address address: ROBERT ROSSLE STRASSE 10
city: BERLIN
postcode: 13125

contact info
Titolo: Dr.
Nome: Ioannis
Cognome: Legouras
Email: send email
Telefono: +49 30 9406 4247

 Nazionalità Coordinatore Germany [DE]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX-DELBRUCK-CENTRUM FUR MOLEKULARE MEDIZIN IN DER HELMHOLTZ-GEMEINSCHAFT

 Organization address address: ROBERT ROSSLE STRASSE 10
city: BERLIN
postcode: 13125

contact info
Titolo: Dr.
Nome: Ioannis
Cognome: Legouras
Email: send email
Telefono: +49 30 9406 4247

DE (BERLIN) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

direct    fate    function    cells    molecular    expression    strategy    tissues    cell    regulatory    regulating    homolog    screens    complexes    skin    usp    lin    reprogramming    tfs    directly    mechanisms    cellular   

 Obiettivo del progetto (Objective)

'Cellular replacement therapies for treating degenerative diseases such as Alzheimer’s will require the generation of lost tissues by reprogramming cell types. While one strategy is to de-differentiate somatic cells into induced pluripotent stem cells with subsequent re-differentiation, an alternative strategy is to directly convert cells to the target cell type by using specific Transcription Factors (TFs). The latter strategy utilizes TFs that can induce specific cell fates; however, their ability to reprogram cell identities upon mis-expression is very limited. We are elucidating refractory mechanisms of direct cell fate conversion using C. elegans as a model organism. Using RNAi screens we recently identified LIN-53 (homolog of Rbbp4/7) as an inhibitor of reprogramming mitotic germ cells directly into specific neurons and muscle-like cells. At least six different chromatin regulatory complexes such as NURF/NuRD remodeling and histone modifying complexes share LIN-53. However, the molecular function of LIN-53 in different tissues and its exact role in regulating reprogramming remains elusive. Furthermore, forward genetics screens identified a ubiquitin specific protease (USP) to be involved in regulating direct reprogramming of hypodermal (skin) cells in worms. Nothing is known about this USP, only that its homolog is a direct target of the ectodermal master regulator p63 in human skin cells. Using 4D time-lapse imaging and tissue-specific biochemistry (ChIP-seq, SILAC) we aim to determine the spatio-temporal expression pattern of both factors in vivo and investigate their molecular function in controlling cell fate reprogramming. We will elucidate the regulatory network of these reprogramming factors by complementing our examinations with genetic analysis. Our findings might have broad implications for understanding mechanisms that restrict direct cell fate reprogramming and for generating specific tissues from different cellular contexts.'

Altri progetti dello stesso programma (FP7-PEOPLE)

CALTHERO (2014)

Comparative Study And Mechanisms Of Calcification Heterogeneity In Atherosclerotic Plaques

Read More  

PREDHYMA (2013)

Prediction of Erosion Damages in Hydraulic MAchines

Read More  

CARDIOMICROBIOME (2012)

Discovery of Atherosclerosis Microbiome: Systems Biology of Cardiovascular Pathogenesis

Read More