PROGEOCOM

Avenues in Probabilistic and Geometric Combinatorics

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙376˙504 €
 EC contributo 1˙376˙504 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-05-01   -   2018-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben-Yehuda
Email: send email
Telefono: +972 2 6586676
Fax: +972 72 2447007

IL (JERUSALEM) hostInstitution 1˙376˙504.00
2    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Prof.
Nome: Gil
Cognome: Kalai
Email: send email
Telefono: +972 2 6584729
Fax: +972 2 5630702

IL (JERUSALEM) hostInstitution 1˙376˙504.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

on    probabilistic    graphs    dimensional    geometric    faces       discuss    isoperimetric   

 Obiettivo del progetto (Objective)

'We consider problems in geometric and probabilistic combinatorics and discuss some applications to and connections with other areas.One underlying theme of our proposal is discrete isoperimetric relations.

On the probabilistic side we discuss applications of Fourier analysis of Boolean functions to the study of threshold behavior of random graphs and other stochastic models, and propose ten directions for this emerging theory. One crucial problem is the study of near equality cases of Harper's isoperimetric inequality.

On the geometric side we discuss the relation between the number of (k-1)-dimensional faces and the number of k-dimensional faces for complexes that can be embedded in 2k-dimensions. We also consider metrical and algorithmical problems on graphs of polytopes and Helly-type theorems.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FLOVIST (2008)

Flow visualization inspired aero-acoustics with time-resolved Tomographic Particle Image Velocimetry

Read More  

NEUROCODEC (2013)

Neurobiological basis of collective decision making in the human brain

Read More  

BETTERSENSE (2014)

Nanodevice Engineering for a Better Chemical Gas Sensing Technology

Read More