CAPMEM

Comparative analysis of plant and mammalian DNA methylation functions in epigenetic Arabidopsis mutants

 Coordinatore UNIVERSITY OF LEEDS 

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090
Fax: +44 113 343 0949

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 299˙558 €
 EC contributo 299˙558 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS

 Organization address address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT

contact info
Titolo: Mr.
Nome: Martin
Cognome: Hamilton
Email: send email
Telefono: +44 113 343 4090
Fax: +44 113 343 0949

UK (LEEDS) coordinator 299˙558.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

stress    arabidopsis    function    loss    dna    plants    mammalian    epigenetic    mammals    model    plant    methylation    conserved    mutants    proteins    evolution   

 Obiettivo del progetto (Objective)

'BACKGROUND: Epigenetic modifications dictate major biological processes, such as control of gene activity during development and genome stability under stress. DNA methylation is a primary epigenetic mechanism mediated by a family of methyltransferase enzymes. Maintenance function of DNA methylation is well conserved among plants and animals, based on the structural similarity of their methylation proteins. In contrast to plants, however, mammals do not tolerate loss of methylation, making it difficult to study. The model plant Arabidopsis offers a powerful test system for plant and mammalian methylation, because its methylation mutants are viable and fertile, and methylation patterns are not erased via developmental demethylation/remethylation cycles. Plants experience more extreme environment than mammals, and the evolution of plant methyltransferases may have favoured improved stress adaptation, while in mammals, it may lead to more stable establishment and resetting phases during development. OBJECTIVES: 1) To exploit Arabidopsis as an experimental system for mammalian epigenetic studies; 2) to elucidate the evolution of epigenetic diversity by defining differences and conserved function of plant and mammalian methylation regulators; 3) to assess how methylation affects plant stress adaptation. METHODOLOGY: Re-methylation efficiency in methylation mutants and prevention of methylation loss in plants by mammalian transgenes will be tested by bisulphite sequencing and chromatin immunoprecipitation. Hybrid constructs between the plant and animal proteins will be used. Methylation mutants will be exposed to abiotic variables to compare their stress adaptability. EXPECTED RESULTS: To develop Arabidopsis as a model system for mammals, which may improve application of epigenetics in agriculture and medicine; to further understanding of epigenetic phenomena in plants and mammals, the evolution of methylation systems and their role in adapting to environmental change.'

Altri progetti dello stesso programma (FP7-PEOPLE)

OLGENOME (2013)

"On-line Genomes between Personalized, Preventative and Participatory Medicine: A Biopolitical and Biosocial Analysis of Direct-to-Consumers Genetic Testing"

Read More  

PATHOGEN DETECTORS (2012)

Collective disease defence and pathogen detection abilities in ant societies: a chemo-neuro-immunological approach

Read More  

CYCLOCK (2011)

Cell cycle clock in nervous system and cancer

Read More