Coordinatore | DANMARKS TEKNISKE UNIVERSITET
Organization address
address: Anker Engelundsvej 1, Building 101A contact info |
Nazionalità Coordinatore | Denmark [DK] |
Totale costo | 154˙293 € |
EC contributo | 154˙293 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-09-01 - 2014-08-31 |
# | ||||
---|---|---|---|---|
1 |
DANMARKS TEKNISKE UNIVERSITET
Organization address
address: Anker Engelundsvej 1, Building 101A contact info |
DK (KONGENS LYNGBY) | coordinator | 154˙293.90 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The presently proposed research project will be an integral part of the ongoing solid oxide fuel cell research at the Department of Energy Conversion and Storage in Technical University of Denmark (DTU Energy Conversion). DTU Energy Conversion is a world leader in research, development and commercialisation of solid oxide fuel cells. The third generation cell or metal-supported cell of DTU is currently at a more experimental stage. Here the anode support is replaced by a porous layer of ferritic stainless steel (approx. 78% iron and 22% chromium). The cell is constructed on top of a support consisting of iron and chromium. The anode is on the same metal powder as the support, but with a finer particle size. However due to the corrosion problems, other solutions are being sought, lanthanide doped strontium titanate (LST) being one of them. The advantages are a significant decrease in cost and an increased robustness in case of fuel supply failure or operating stop (redox and temperature cycles). At the same time the operating temperature is reduced to 550-650°C. In addition to the completely new support, all active components are being improved through characterisation, testing, and modelling. DTU Energy Conversion would greatly benefit from an additional researcher working on the crucial aspects of the modelling of the above novel SOFC development project. DTU Energy Conversion have identified a researcher with the ideal background to perform the multi-scale thermo-fluid and electrochemical modelling of the state-of-the-art planar SOFC using numerical modelling approaches (i.e. a combination of FEM and CFD) in three-dimensions and in the process receive training and enhance his experience in the multidisciplinary set of skills, including SOFC development and manufacture, stack development, testing, and also administrative/technical management of the EU projects.'
In depth analysis of the role of essential kinases in regulation of meiotic chromosome segregation in Schizosaccharomyces pombe
Read MoreNovel vinca alkaloids analogs as anticancer agents: a multidisciplinary quest
Read MoreCharacterization of EWI-2wint and the mechanism behind its inhibition of HCV infection
Read More